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V. L. Rvachev called R-functions ‘logically charged functions’ because they
encode complete logical information within the standard setting of real anal-
ysis. He invented them in the 1960s as a means for unifying logic, geometry,
and analysis within a common computational framework – in an effort to
develop a new computationally effective language for modelling and solving
boundary value problems. Over the last forty years, R-functions have been
accepted as a valuable tool in computer graphics, geometric modelling, com-
putational physics, and in many areas of engineering design, analysis, and
optimization. Yet, many elements of the theory of R-functions continue to be
rediscovered in different application areas and special situations. The purpose
of this survey is to expose the key ideas and concepts behind the theory of R-
functions, explain the utility of R-functions in a broad range of applications,
and to discuss selected algorithmic issues arising in connection with their use.
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1. From Descartes to Rvachev

Descartes (1637) is usually credited with conceiving the coordinate method
that allows investigating geometric objects by algebraic means. Centuries
of remarkable progress in understanding and classifying local and global
properties of analytic and algebraic representations followed, but the need
for systematic construction of such representations did not materialize until
the middle of the twentieth century. The arrival of the computer created
the need to represent and manipulate sets of points, particularly (but not
exclusively) in Euclidean three-dimensional space, for the purposes of visu-
alization, animation, geometric design, analysis, simulation, and so on. How
does one represent a set of points on a computer using their coordinates?
There are really only two methods: by providing a rule for generating points
in the set, or by designing a method for testing a point p ∈ Rn with known
coordinates against some predicate that distinguishes the points in the set
from other points. The first method assumes an ability to parametrize the
point set (for example, as a spline, or a triangulation, subdivision scheme,
or some other procedural definition); see Farin, Hoschek and Kim (2002) for
a recent update on progress in parametric modelling. The second method
implies an ability to represent a geometric object Ω implicitly by a predicate
S(p), as

Ω = {p : S(p) is true}. (1.1)

Parametrizations and predicates are well known for simple objects, such
as lines, conic sections, and quadric surfaces, but not for the majority of
useful geometric objects arising in the physical world and non-trivial mod-
elling situations. Such objects require constructions to be carried out in a
piecewise fashion, leading to non-trivial data structures and algorithms in
geometric modelling and computational geometry. In this survey, we will
not deal with parametric representations, but focus instead on the construc-
tion of implicit representations. The primitive form of such a representation
is an equation f(p) = 0 or an inequality f(p) ≥ 0. In this case, the predi-
cate S(p) is defined by the sign of f(p), for example, to be true if f(p) = 0
or f(p) ≥ 0, and false otherwise. For convenience of notation, we will use
the predicates (f(p) = 0) or (f(p) ≥ 0), respectively, to denote the set Ω
of points for which the predicate S(p) is true.

But how does one write an equation for a rectangle? V. L. Rvachev strug-
gled with this question in the 1960s while using the method of Kantorovich
(Kantorovich and Krylov 1958) to solve a boundary value problem of con-
tact mechanics on a square domain. He finally came up with the equation
for the boundary of a rectangle with sides 2a and 2b, respectively, as:

a2 + b2 − x2 − y2 −
√

(a2 − x2)2 + (b2 − y2)2 = 0. (1.2)

However, he could not explain his own constructions using the classical
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methods of analytic and algebraic geometry that focus on direct problems of
investigating given equations and inequalities. In contrast, Rvachev wanted
to devise a methodology for solving what he termed the inverse problem of
analytic geometry : constructing equations and inequalities for given geomet-
ric objects. This quest resulted in his seminal publication, Rvachev (1963),
followed by the comprehensive theory of R-functions that has been devel-
oped over the last forty-plus years.1 In a nutshell, R-functions operate on
real-valued inequalities as differentiable logic operations; the resulting the-
ory solves the inverse problem of analytic geometry and has a wide range of
applications, with particular emphasis on solutions of boundary value prob-
lems. As of 2001, the bibliography on the theory of R-functions included
more than fifteen monographs and over five hundred technical articles co-
authored by Rvachev and his followers (Matsevity 2001). R-functions were
introduced into the Western literature by the author (Shapiro 1988), and
are now widely used in geometric modelling, computer graphics, robotics,
engineering analysis, and other computational applications.

The goal of this paper is to expose the key concepts in the theory of
R-functions, without trying to be comprehensive. This subject will take us
up to Section 4. Additional references in English are now accessible, no-
tably the review by Rvachev and Sheiko (1995). Among the references in
Russian, the monograph by Rvachev (1982) continues to serve as an ency-
clopedic source of many key ideas and results. The utility of R-functions
cannot be fully appreciated without some discussion of how they may be
used algorithmically to solve inverse problem of analytic geometry (Sec-
tion 5). Sections 6 and 7 are devoted to applications of R-functions and
derived constructions to computational tasks in geometric modelling and
boundary value problems, respectively.

2. Functions for shapes with corners

2.1. Many equations of a rectangle

How does one write an equation for a rectangle? Serendipitously, it is not
that difficult to come up with several methods, though none of them would
directly yield expression (1.2). For example, recalling the definition of the
Lp-norm, we know that the equation 1 − |x|n − |y|n = 0 describes a family
of shapes for n = 2, 3, . . . , that vary from the circle, when n = 2, to the

1 The origin of the term R-function is not entirely clear. The use of a Roman (not
Cyrillic!) symbol R suggests that it is a mathematical symbol corresponding to the set
of reals. A conflicting personal account by Rvachev (1996) suggests that R does stand
for Rvachev, but that it was coined by his sister, also a noted Ukrainian mathematician,
supposedly in memory of their father.
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unit square, as n → ∞. Scaling x by α = 1/a and y by β = 1/b, we obtain
the widely used equation of a superellipse:

1 − |αx|n − |βy|n = 0. (2.1)

For even n, this is a polynomial equation since we can then drop the abso-
lute value sign. Of course, this is only an approximation of the rectangle’s
boundary, since we can never quite get into its corners. Alternatively, if we
take the limit, we end up with the L∞-norm and the corresponding equation

1 − max(|αx|, |βy|) = 0, (2.2)

which defines the exact desired boundary of the rectangle, even if we no
longer have the nice analytic properties of a polynomial.

But what if we want equations for other shapes, say a polygon? A more
general method for constructing such equations and inequalities would be
needed, and it should also work for the rectangle of course. So let us consider
the rectangle once more, and try to compose its equation from simpler
primitive equations. Even for the rectangle, there are at least two distinct
ways to do this.

First observe that the rectangle is the intersection of the vertical stripe
Ω1 = (a2 − x2 ≥ 0) and horizontal stripe Ω2 = (b2 − y2 ≥ 0) defined by two
inequalities. The corresponding equations define their respective boundaries
(pairs of vertical or horizontal lines). Then the rectangle is defined by

(a2 − x2 ≥ 0)∩ (b2 − y2 ≥ 0), or (f = min(a2 − x2, b2 − y2) ≥ 0). (2.3)

Furthermore, the equality f = 0 defines the boundary of the rectangle.
Once again, the equation is not polynomial and we may not like the differ-
ential properties of the min function, but the construction itself is perfectly
valid and generalizes to other shapes that can be defined by intersections
of simpler shapes. In fact, we are only one step away from obtaining the
expression in (1.2).

Alternatively, we observe that the boundary of the rectangle is the union
of four line segments. If we could write an equation fi(x, y) = 0, i =
1, 2, 3, 4, for each of the line segments, then the equation of the rectangle is
obtained by a simple product as

f1f2f3f4 = 0. (2.4)

This construction generalizes to arbitrary polygonal boundaries, and re-
quires only multiplication – provided, of course, that we find a method for
writing an equation for each line segment. Perhaps we could try to represent
each line segment as the intersection of a line and a circular disk, but this
would require using again the min operation, and so on.
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(a) f is defined in (1.2) (b) f is defined in (2.3)

(c) f is defined in (2.4) (d) f is the Euclidean distance

Figure 2.1. Four different implicit representations (f = 0) of the rectangle.

Clearly there are many different ways to construct an equation f(x, y) = 0
for the rectangle’s boundary. Four such functions corresponding to some
of the above constructions are plotted in Figure 2.1. The theory of R-
functions explains, systematizes, and expands the above constructions to a
virtually unlimited variety of shapes and functions. But for now, the above
observations naturally raise two interrelated questions.

• What other useful point sets (shapes) admit similar solutions to the
inverse problem of analytic geometry?

• Which types of functions are possible and preferable for such shapes?

The answers to these questions depend on what is meant by ‘useful’ and
‘preferable’, as we discuss next.

2.2. Useful shapes

If one is mostly interested in describing domains of boundary value problems
(as Rvachev was), then it is reasonable to assume that the point sets in
question should include their boundaries, i.e., be closed subsets of R

d. For
any such closed set Ω, there exists a suitable continuous function, namely
the Euclidean distance function

d(p) ≡ inf
x∈∂Ω

‖p − x‖ (2.5)

and, conversely, for every continuous function f , the equality f(p) = 0 rep-
resents a closed subset of R

d. For the rectangle, this function is plotted
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in Figure 2.1(d). Furthermore, according to Whitney (1934), whenever it
is possible to construct such a continuous function f , it is also possible to
construct a C∞-function that vanishes on the set of points. Specific con-
structions may be found in Rvachev and Rvachev (1979), but this would
take us well beyond the scope of the present survey; however, we shall see
that constructing Cn-functions is fairly straightforward with R-functions.
We should not expect to do better than that in general, because arguments
based on Taylor series expansion easily show that no such function can be
analytic in the neighbourhood of a corner of the square (Rvachev 1982).
This limitation also applies to a wide variety of shapes in science and en-
gineering whose boundaries are only piecewise smooth, i.e., composed in a
piecewise manner from smooth curves and surfaces.

We now recognize that such shapes belong to the class of semi-analytic
sets, defined as those sets that can be constructed as a finite Boolean combi-
nation (i.e., a finite composition of unions, intersections, and complements)
of sets (fi ≥ 0), where fi are real analytic functions. Originally proposed by
Lojasiewicz (1964) as a natural generalization of semi-algebraic sets, semi-
analytic sets are now widely adopted as a proper setting for most geometric
modelling applications (Requicha 1977, 1980, Shapiro 1994, 2002), though
semi-algebraic sets continue to dominate most practical implementations.
Semi-analytic sets clearly include all algebraic and analytic varieties of the
form (f = 0), but our goal is to be able to construct functional representa-
tions for any closed semi-analytic set, without restrictions on its dimension,
codimension, or other topological properties. Furthermore, the distinction
between sets defined by inequalities (f ≥ 0) and equalities (f = 0) is arti-
ficial. A point set Ω that is represented as (f = 0) is also represented by
(−f2 ≥ 0); and whenever Ω is represented by (g ≥ 0), it is also represented
by (g − |g| = 0).

The characterization of useful shapes as semi-analytic sets points the
way towards the constructive solution of the problem of inverse analytic
geometry. Given any shape Ω, we may subdivide it into primitive ‘pieces’
for which the inverse problem is either trivial or has already been solved.
The corners usually provide a good hint on where the shape should be
subdivided. We can then combine these primitive solutions using the logical
operations of ∧,∨,¬ into a single predicate S(p) that represents Ω. Three of
the rectangle’s equations were constructed using this idea: using intersection
of vertical and horizontal stripes, using union of the line segments, and the
very first equation (1.2), though the latter may not yet be obvious. On the
other hand, introduction of logical (or equivalently set-theoretic) operations
also leads to a conceptual difficulty. We no longer have a single real-valued
inequality f ≥ 0, but a logical predicate defining the set of points in Ω.
In writing the equations for the square, we carefully translated the logical
predicates into the corresponding real-valued function f , but to what end?
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2.3. Preferable functions

If the function f is used only as a characteristic function that distinguishes
points in the set Ω from all other points, then it really does not matter what
f is, as long as it can be evaluated in a reasonably efficient manner. What
else would we use the function f for?

Rvachev’s original goal was to extend the method of Kantorovich for
solving boundary value problems. Briefly, the method is a technique for
constructing the coordinate basis functions satisfying the Dirichlet boundary
conditions u|∂Ω = ϕ. The idea of the method is based on the observation
that in this case, the solution of a differential equation can be represented
in the form

u = ϕ + ωΨ, (2.6)

where ω : R
n → R is a known function that takes on zero value on the

boundary ∂Ω of the domain and is positive in the interior of Ω; Ψ is some
function to be determined. Representing Ψ =

∑n
i=1 Ciχi, as a linear combi-

nation of basis functions from some sufficiently complete space (polynomial,
splines, etc.) reduces the original boundary value problem to that of deter-
mining the coefficients Ci that solve the corresponding variational problem.
But it is not obvious how this method may be extended to solve bound-
ary value problems with other types of boundary conditions or what the
function ω should be in general. Rvachev recognized expression (2.6) as the
beginning of a Taylor series expansion. In one dimension, expression (2.6)
becomes

u = u(x0) + (x − x0)Ψ. (2.7)

In other words, the function ω appears to play the role of the distance to the
boundary, at least in the vicinity of the boundary ∂Ω, where the boundary
conditions are prescribed. Thus, the Kantorovich method may be viewed as
a power series expansion of a field function u in powers of the distance ω to
the boundary ∂Ω; higher-order boundary conditions should be associated
with powers of ω, and ω should be sufficiently smooth (Rvachev, Sheiko,
Shapiro and Tsukanov 2000).

But there is another problem. If different boundary conditions are pre-
scribed on different portions ∂Ωi of the boundary, they must be somehow
interpolated. In one dimension, the interpolation problem is well under-
stood. If function values are specified at n points x1, . . . , xn, the key to
interpolation is to construct weight functions Wi that take on the value of 1
at xi and are 0 at all other points xj , j 
= i. For example, Wi can be taken
as the Lagrange basis polynomial Li written in a general form as

Li(x) = ki

∏

j �=i

(x − xj), (2.8)

where ki is chosen so that Li(xi) = 1 (Lancaster and Salkauskas 1986).
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Once again, we see that the key to constructing the weight appears to be
the distances to the points xj where the data is prescribed. It takes a bit
of imagination to realize that the same technique should work in higher di-
mensions to transfinitely interpolate values prescribed on boundaries ∂Ωi, if
every term (x−xj) is replaced by a function ωj that measures the distance to
the boundary portion ∂Ωj (Rvachev, Sheiko, Shapiro and Tsukanov 2001).

Implicit representations and distance functions are also used widely for
computer shape and solid modelling (Shapiro 1994, Pasko, Adzhiev, Sourin
and Savchenko 1995, Bloomenthal 1997). In these applications, it is often
assumed that (ω ≥ 0) is a solid shape Ω, whose boundary ∂Ω is (ω = 0),
and whose interior intΩ is (ω > 0). The functions used in equations (1.2),
(2.2), and (2.3) for the rectangle exhibit this property, but it clearly does
not hold in general. For example, the function in equation (2.4) is strictly
positive everywhere except the rectangle’s boundary and does not distin-
guish between the rectangle’s interior and exterior. Furthermore, if (ω ≥ 0)
is a point set, then (ωg ≥ 0) is the same set for any function g such that
(g ≥ 0) ⊂ (f ≥ 0), but (ωg = 0) is not necessarily the set’s boundary. These
simple examples illustrate that topological properties of implicitly defined
point sets vary widely, depending on application, construction procedures,
and type of functions f . We will discuss limited results related to solid
modelling in Section 5, but we also note that topological properties of semi-
analytic and semi-algebraic sets have been studied extensively, for example,
in Whitney (1957, 1965), Andradas, Bröcker and Ruiz (1996) and Bochnak,
Coste and Roy (1998).

To summarize, the useful properties of the functions sought include (1) the
identification of the function’s sign with the membership in the set, (2) some
degree of smoothness, and (3) distance-like properties. When the geometry
of the point set is encoded using such a function, many otherwise difficult
problems involving geometry of the point set become amenable to standard
techniques from classical one-dimensional functional and numerical anal-
ysis. For boundary value problems, this implies an ability to construct
bases of coordinate functions satisfying any and all types of boundary con-
ditions. In retrospect, smooth distance-like functions may be constructed
for most shapes by a variety of approximate techniques (Freytag, Shapiro
and Tsukanov 2006), but to construct them exactly everywhere, including
the corners, we need R-functions.

3. R-functions

The main utility of the theory of R-functions is to replace the logical and set-
theoretic constructions with the corresponding real-valued functions, yield-
ing an implicit representation ω(p) ≥ 0 for any semi-analytic set Ω. Based
on the above discussion, this task would be impossible with algebraic or
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analytic functions ω. So we must look for additional operations, and it
turns out that all we really need is the square root. The material in this
section follows roughly Shapiro (1988), but is essentially an annotated and
distilled version of thorough expositions by Rvachev (1967, 1974, 1982).

3.1. Logically charged real functions

Logically charged real functions is the name given by Rvachev to real-valued
functions of real variables having the property that their signs are completely
determined by the signs of their arguments, and are independent of the
magnitude of the arguments. For example, consider the following functions:

W1 = xyz,

W2 = x + y +
√

xy + x2 + y2,

W3 = 2 + x2 + y2 + z2,

W4 = x + y + z −
√

x2 + y2 −
√

x2 + z2 −
√

y2 + z2 +
√

x2 + y2 + z2,

W5 = xy + z + |z − yx|.

Table 3.1 shows how the signs of these functions depend on the signs of
their arguments. In contrast, here are some functions whose sign depends
not only on the sign of the arguments but also on their magnitude:

W6 = xyz + 1, W7 = sinxy, W8 = x + y + z −
√

x2 + y2,

and so on. Specifying distributions of signs for the arguments of functions
W1, . . . , W5 completely determines the corresponding sign distribution of
the functions; functions W6, W7 and W8 do not behave in this fashion.

These simple examples illustrate the key idea. We view the set of reals
R as consisting of two subsets: ∆ = {(−∞, 0], [0, +∞)}, and then seek

Table 3.1. The signs of real functions W1, . . . , W5 depend
only on the signs of their arguments x, y, and z

x y z W1 W2 W3 W4 W5

− − − − − + − +
− − + + − + − +
− + − + + + − −
− + + − + + − +
+ − − + + + − −
+ − + − + + − +
+ + − − + + − +
+ + + + + + + +
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the set R(∆) of those functions f : R
n → R that predictably inherit the

membership in each of the two subsets of ∆. For the time being, we assume
that zero is always signed: +0, or −0; this allows us to determine whether
it belongs to the set of positive or negative numbers.2 Summarizing the
inheritance properties of such functions in a sign table, such as Table 3.1,
immediately suggests the connection between functions in R(∆) and the
binary logic functions. The connection is made precise by using the (Heavi-
side) characteristic function S2 : R → B ≡ {0, 1} of the interval [0+,∞):

S2(x) =

{

0 if x ≤ −0,

1 if x ≥ +0.

Definition 1. A function fΦ : R
n → R is an R-function if there exists a

(binary) logic function Φ : B
n → B satisfying the commutative diagram:

R
n fΦ−−−−→ R

Sn
2



�



�S2

B
n −−−−→

Φ
B

(3.1)

It is well known that the logic functions form a Boolean algebra with
truth value 1 and false value 0. Such functions are usually defined using
logic operations ∧ (and), ∨ (or), and ¬ (negation) on n logic variables. The
logic function Φ in the above definition is called the companion function of
the R-function fΦ. The commutative diagram implies that

S2(fΦ(x1, x2, . . . , xn)) = Φ(S2(x1), S2(x2), . . . , S2(xn)). (3.2)

Informally, a real function fΦ is an R-function if it can change its property
(sign) only when some of its arguments change the same property (sign).
We will adopt the above definition of R-functions for the purposes of this
survey. But in fact, the notion of R-functions is a special case of a more
general concept of R-mapping that is associated with qualitative k-partitions
of arbitrary domains and multi-valued logic functions (Rvachev 1982). We
will touch briefly on this subject in Section 8.

It follows that every logic function Φ is a companion to infinitely many
R-functions. For example, the companion logic function for the R-function
w1 = xy is X ⇔ Y (X is equivalent to Y ); we just check that

S2(xy) = (S2(x) ⇔ S2(y)).

But the logical equivalence is also a companion function for R-functions

2 Including zero in both intervals may seem strange, and we will revisit this issue in
Section 3.7.
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such as

w2 = xy(1 + x2 + y2), w3 = (1 − 2−x)(3y − 1),

and so on. The set of all R-functions that have the same logic companion
function is called a branch of the set of R-functions. Since the number of
distinct logic functions of n arguments is 22n

, there are also 22n

distinct
branches of R-functions of n arguments.

3.2. Branches of R-functions

The set of R-functions is infinite. However, for applications, it is not nec-
essary to know all R-functions; we only need to be able to construct R-
functions that belong to a specified branch. The recipes for such construc-
tions are implied by the general properties of R-functions that follow almost
immediately from their definition. Complete proofs, as well as many addi-
tional properties, can be found in the references, notably in Rvachev (1967)
and (1982).

(1) The set of R-functions is closed under composition. In other words,
any composition of R-functions is also an R-function.

(2) If a continuous function f(x1, . . . , xn) has zeros only on coordinate hy-
perplanes (i.e., f = 0 implies that one or more xj = 0, j = 1, 2, . . . , n),
then f is an R-function.

(3) The product of R-functions is an R-function (because the logical com-
panion of the product is equivalence). If the R-function f(x1, . . . , xn)
belongs to some branch, and g(x1, . . . , xn) > 0 is an arbitrary function,
then the function fg also belongs to the same branch.

(4) If f1 and f2 are R-functions from the same branch, then the sum f1+f2

is an R-function belonging to the same branch.

(5) If fΦ is an R-function whose logic companion function is Φ, and C is
some constant, then CfΦ is also an R-function. The logic companion
function of Cf is Φ if C > 0, or ¬Φ if C < 0.

(6) If fΦ(x1, . . . , xn) is an R-function whose logic companion function is
Φ(X1, . . . , Xn) and f can be integrated with respect to xi, then the
function

∫ xi

0 f(x1, . . . , xn) dxi is an R-function whose logic companion
function is Xi ⇔ Φ(X1, . . . , Xn).

The above list of properties is not exhaustive, but it is enough to suggest that
more complex R-functions may be constructed from simpler functions. In
particular, the closure under composition leads to the notion of sufficiently
complete systems of R-functions, i.e., collections of R-functions that can be
composed in order to obtain an R-function from any branch.
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Theorem 1. (Rvachev 1967) Let H be some system of R-functions,
and let G be the corresponding system of the logic companion functions.
The system H is sufficiently complete if the system G is complete.

The criteria for completeness of a system of Boolean logic functions are
well understood. For example, take G = {1,¬X, X1 ∧ X2, X1 ∨ X2}. It
is well known that all logic functions can be constructed using these basic
functions; in other words, G is complete. It is neither unique nor minimal,
since the same functions can also be constructed using only conjunction
and negation, or disjunction and negation. Furthermore, all logic functions
can be constructed using only one operation, the so-called Sheffer’s stroke
(Sheffer 1913), popularly known as the nand (‘not and’) operation. For
geometric applications, the logical operations ∨ and ∧ are both convenient
and intuitive, because they define the set operations of union and intersec-
tion respectively. Thus, we adopt the system G as the primary system of
companion functions and, following Theorem 1, seek the R-functions from
the corresponding branches. We will refer to these functions, respectively,
as R-negation, R-disjunction, and R-conjunction.

3.3. Sufficiently complete systems of R-functions

It is fairly easy to come up with any number of sufficiently complete systems
of R-functions. For example, it is easy to check that the following functions
are R-functions (their logic companion function in parentheses):

C ≡ const (logical 1),
x ≡ −x (logical negation ¬),

x1 ∧1 x2 ≡ min(x1, x2) (logical conjunction ∧),
x1 ∨1 x2 ≡ max(x1, x2) (logical disjunction ∨).

Theorem 1 states that an R-function from any branch can be defined using
a composition of these four functions. We shall see that this system of R-
functions, which we will call R1(∆), has a number of attractive properties,
but the resulting R-functions are not differentiable. For applications where
differentiability is important, for example in solutions of boundary value
problems, we need another system. Below we compare several such systems
in terms of simplicity, differential properties, and convenience of use. We
will adopt a constant function and R-negation as above for all systems
of R-functions, so that the differences between various systems amount to
choosing only two operations: R-conjunction and R-disjunction.

A particularly elegant method for deriving a simple but powerful suf-
ficiently complete system of R-functions relies on the triangle inequality.
Suppose that we want to construct an R-conjunction. We are looking for a
function f of two arguments x1 and x2, whose sign is positive if and only if
both x1 and x2 are positive. Consider a triangle with two sides of length x1
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and x2. The square of the third side is determined by the law of cosines as
x2

1 + x2
2 − 2αx1x2, where α is the cosine of the angle between the two sides.

It is easy to see that the function

f = x1 + x2 −
√

x2
1 + x2

2 − 2αx1x2

satisfies the desired properties. When both x1 and x2 are positive, their
sum must exceed the length of the third side of the triangle, and therefore
f > 0. If either x1 or x2 are negative, then by the same argument f < 0. In
other words, f is the R-conjunction for any value of −1 < α < 1. A similar
argument leads immediately to the conclusion that the function

g = x1 + x2 +
√

x2
1 + x2

2 − 2αx1x2

is the corresponding R-disjunction of the two real variables x1, x2. Together
with R-negation, these R-functions constitute a sufficiently complete sys-
tem, which allows construction of all other R-functions by composition. In
fact, we are only one step away from what is considered to be the principal
system of R-functions.

Based on our observations above, we define a system of R-functions by

Rα(∆) :
1

1 + α

(

x1 + x2 ±
√

x2
1 + x2

2 − 2αx1x2

)

, (3.3)

with (+) defining R-disjunction x1 ∨α x2 and (−) defining R-conjunction
x1 ∧α x2, respectively. The scalar factor 1

1+α remains positive and does not
affect our derivation above. It will prove useful for other distance-related
properties of R-functions. But is the system Rα better than the system R1?

It may seem that we have not improved all that much, because the two
systems are closely related. Observe that min(x1, x2) and max(x1, x2) are
the smallest and the largest root, respectively, of the equation

z2 − (x1 + x2)z + x1x2 = 0,

because min(x1, x2)+max(x1, x2) = x1 +x2, and min(x1, x2)max(x1, x2) =
x1x2. Solving this equation for z, we get two roots,

1

2

[
x1 + x2 ±

√

(x1 − x2)2
]
,

which are simply max(x1, x2) and min(x1, x2), depending on whether we
choose (+) or (−), respectively. Apparently, the system of R-functions
R1(∆) is indeed the system Rα(∆) with α = 1, which we previously excluded
because it corresponds to a singular triangle with a zero angle. Whenever
the expression under the square root vanishes, the resulting Rα-functions
become non-differentiable; thus, R1-functions are not differentiable when
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x1 = x2. But let us choose α = 0. The system Rα(∆) becomes

R0(∆) : x1 + x2 ±
√

x2
1 + x2

2. (3.4)

If we think of x1, x2 as sides of a triangle, then α = 0 implies that this
triangle is right, and the R0-functions are based on the Pythagoras theo-
rem! A remarkable property of these R0-functions is that they are analytic
everywhere, except at the origin where x1 = x2 = 0.

We can improve further, at least theoretically, by upgrading R0-functions
to the class of Cm-functions defined as:

Rm
0 (∆) :

(

x1 + x2 ±
√

x2
1 + x2

2

)

(x2
1 + x2

2)
m
2 . (3.5)

The additional factor of (x2
1 + x2

2)
m
2 makes these functions differentiable at

the origin as as well, but with vanishing derivatives. At all other points, this
factor stays positive, and hence does not affect the logical properties of the
R0-function. Another useful generalization of the R0-system comes from
restating the triangle inequality with the Lp-norm. The resulting system of
Rp(∆)-functions becomes3

Rp(∆) : x1 + x2 ± (xp
1 + xp

2)
1

p , (3.6)

for any even positive integer p.
One may wonder whether the above R-functions are as simple as possi-

ble. For example, can we find a sufficiently complete system of R-functions
among polynomials? The answer is no. It was shown in Rvachev (1967)
that a sufficiently complete system of R-functions cannot be constructed
using addition and multiplication alone. On the other hand, a sufficiently
complete system does not have to use the root operation, and other sys-
tems of R-functions, including those constructed in a piecewise manner, are
discussed in Rvachev (1982). We will use the notation R∗(∆) to refer to a
generic sufficiently complete system of R-functions, and the corresponding
R∗-functions as ∧∗,∨∗, etc. It is convenient to compare the different systems
of R-functions by plotting their level sets on the x1x2 plane (see Figure 3.1).
From the definition, all R-functions from the same branch have identical
signs in every quadrant. Thus, all R-conjunctions are positive in the first
quadrant and negative in the other three. Similarly, all R-disjunctions are
positive in all quadrants except the third quadrant, where both x1 and x2

are negative. It is also clear that similarities between different systems of
R-functions end somewhere in the neighbourhoods of the coordinate axes,
and the differences may become more pronounced as we go away from the
coordinate axes.

3 An unfortunate consequence of this notation, preserved from Rvachev (1982), is that
Rp(∆) with p = 2 is identical to Rd(∆) with d = 0.
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0 -disjunction x ∨m
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Figure 3.1. R-conjunctions (left) and R-disjunctions
(right) for the three popular systems of R-functions:
R1(∆), R0(∆), and Rm

0 (∆).
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3.4. Composite and direct R-functions

Given any such sufficiently complete system, composition may be used to
construct R-functions for any branch specified by a logic companion func-
tion. Suppose Φ = (¬X1∧X2)∨(X1∧¬X2). The corresponding R0-function
f is obtained by composition as

f = (x1 ∧0 x2) ∨0 (x1 ∧0 x2)

= −x1 + x2 −
√

x2
1 + x2

2 + x1 − x2 −
√

x2
1 + x2

2

+

((

−x1 + x2 −
√

x2
1 + x2

2

)2
+

(

x1 − x2 −
√

x2
1 + x2

2

)2
) 1

2

= 2
(√

x2
1 + x2

2 − x1x2 −
√

x2
1 + x2

2

)

,

and, of course, the factor of 2 may be dropped as well, because it does not
affect the logical properties of the composite R-function. Each of the three
forms of the R-function above suggests a different use. The first expression
suggests that a composite R-function may be represented and evaluated
procedurally as any other expression, given its logic companion function.
The second form is obtained by syntactic substitution, if such an explicit
expression is desired. The last expression is much more efficient, but it
could not be obtained without direct analysis and symbolic optimization
of the composite R-function. From now on we will use R-conjunctions and
R-disjunctions as elementary functions, i.e., we will just write x1 ∧m

α x2,
x1 ∨1 x2, etc. We know how to evaluate and differentiate these functions,
and the notation becomes much simpler.

In many special situations, it may be advantageous to construct R-func-
tions directly, based on desired logic properties, and/or additional assump-
tions about the arguments. Thus, in the above example, the logic function
Φ simplifies to the exclusive ‘or’ function, which is the negation of the equiv-
alence. The simplest R-function in the corresponding branch is −xy, which
may or may not be preferable to the functions in the above example, de-
pending on other desired properties of R-functions. The general questions
of optimization of composite R-functions according to some criteria may
lead to challenging problems (Rvachev 1982, p. 127). For example, direct
constructions of R1-conjunction and R1-disjunction have been generalized
to n-ary logical operations, but similar generalizations of R0-functions, that
are analytic almost everywhere, have been established only up to 5 argu-
ments.

We will discuss several other direct constructions in the context of ap-
plications in Sections 6 and 7. A particularly useful concept is that of
a function f : R

n → R which is an R-function only on some subdomain
G ⊂ R

n. Such a function f is called a conditional R-function in Rvachev
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(1982). For example, consider the function f : R
4 → R,

f = x1 + x2 + s1

√

x2
1 + x3

2 + s2, (3.7)

which is generally not an R-function. However when s2 = 0 and s1 ∈
{−1, 1}, f is an R-function of x1, x2: R0-disjunction if s1 = 1 and R0-
conjunction if s1 = −1. Conditional R-functions may also be defined over
finite intervals of its arguments, for example over the interval xi ∈ [−1, 1].

3.5. Logic properties of R-functions

Since R-functions mimic the corresponding companion logic functions, one
might expect that they should also inherit some properties of the Boolean
logic algebra. In particular, we should be able to rely on the laws of Boolean
algebra to transform R-functions without affecting their logical properties.
For example, from the definition, the R-functions

x1 ∧
∗ (x2 ∧

∗ x3) and (x1 ∧
∗ x2) ∧

∗ x3

belong to the same branch, by the associative law, as do the R-functions

x1 ∧
∗ (x2 ∨

∗ x3) and (x1 ∧
∗ x2) ∨

∗ (x1 ∧
∗ x3)

by the distributive law, and so on.
Unfortunately, we made one important assumption that directly contra-

dicts the properties of the Boolean algebra. Because zero is included with
both positive and negative numbers, the range of x∧∗ x includes both neg-
ative numbers and 0. This statement is at odds with the requirement of
Boolean algebra that X ∧ ¬X = ∅. Thus, strictly speaking, the logical
properties of R-functions are driven by the properties of a distributive lat-
tice, and not those of the Boolean algebra. As a consequence, properties
of R-functions that involve the negation operation have to be considered
case by case. For example, it is easy to show that R-functions do satisfy the
usual De Morgan’s laws. We shall also see in Section 5 that inclusion of zero
in both positive and negative numbers causes non-trivial complications in
solving the inverse problem of analytic geometry. However, observe that the
same assumption about the partition ∆ is crucial for the following result.

Theorem 2. (Rvachev 1974, p. 62) Every branch of R-functions con-
tains at least one continuous R-function.

Since the R-conjunction and the R-negation as defined above are both
continuous functions, this result follows directly from Theorem 1. If instead
the real axis were subdivided into two intervals (−∞, 0) and [0, +∞), and
0 were considered a positive number, then Theorem 2 would not be true.
To see this, observe that any R-negation would have to be discontinuous at
x = 0 (Rvachev 1974, p. 58).
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As real-valued functions, R-functions may possess a number of additional
logic-related properties. For example, it is easy to check that

x = x, x1 ∧∗ x2 = x1 ∨
∗ x2, x1 ∨∗ x2 = x1 ∧

∗ x2.

Since R-disjunctions and R-conjunctions are symmetric with respect to the
two arguments x1, x2, we have the usual commutative laws:

x1 ∧
∗ x2 = x2 ∧

∗ x1, x1 ∨
∗ x2 = x2 ∨

∗ x1.

Other properties may be derived for specific systems of R-functions and
used in their construction and simplification. However, most systems of
R-functions do not obey the associative or distributive laws. A notable
exception to this rule is the system R1(∆), where min and max operations
are clearly associative and distribute over each other. These properties
and other computational considerations make R1-functions preferable to
other systems whenever differentiability of the functions constructed is not
required.

3.6. Differential properties of the elementary R-functions

Differential properties of R-functions are determined by the properties of
the chosen system of R-functions and vary considerably. The smoothness
of functions and magnitudes of their derivatives are important in geomet-
ric applications described in Section 6, and are critical for correctness of
solutions to boundary value problems discussed in Section 7.

Directly differentiating R-functions in the system Rp(∆) yields

∂f

∂xi
= 1 ±

xp−1
i

(
xp

1 + xp
2

) p−1

p

, i = 1, 2, (3.8)

where f is either an R-conjunction or an R-disjunction, depending on the
choice of the sign. We observe that these R-functions are analytic every-
where, except at x1 = x2 = 0 where the derivative values change with the
direction of approach but remain bounded. On the coordinate axes where
one of the variables xi is zero and the R-function changes its sign, the
derivative with respect to this variable is 1, and the derivative with respect
to the other variable is 0. At the same points, all higher-order derivatives
up to order p − 1 vanish. In other words, the Rp-functions behave as the
(p−1)th-order approximation to the distance functions in the vicinity of the
coordinate axes where the R-functions change their sign. This behaviour is
clearly visible in the plots of R-functions in Figures 3.1(c) and (d). Recall
that the R0-system is a special case of the Rp-system with p = 2.

A similar analysis of R1-functions reveals that min and max behave as ex-
act distances near the same coordinate axes, but these functions are also not
differentiable along the line x1 = x2. Both of these facts are clearly visible
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in Figures 3.1(a) and (b). Finally, the Rm
0 -functions are m times differen-

tiable everywhere, including at the origin where the first m derivatives are 0.
The significant drawback of these R-functions is that they no longer possess
the distance properties of the other systems (see Figures 3.1(e) and (f)).
As we shall see in Section 6, this severely limits their usefulness in most
applications. For additional detailed analysis of differential properties of
the popular systems of R-functions, the reader is referred to Shapiro and
Tsukanov (1999a).

3.7. Other partitions of the real axis

We have chosen the sign of a real number as the criterion for partitioning
the real axis R, but it is not obvious that choice of the partition ∆ was
‘correct’. For example, we could also choose other partitions, such as:

∆2 = {(−∞, 0), [0, +∞)}, ∆3 = {(−∞, 0), 0, (0, +∞)}.

All three partitions distinguish between the positive and the negative
real numbers. Note that the ∆3 partitions the real axis into three intervals,
not two. This forces us to redefine the notion of R-function in terms of
companion functions of 3-valued logic, as opposed to the Boolean functions,
and generalizations to multi-valued logic are briefly discussed in Section 8.
The three partitions are different in the handling of zero, and we have
already observed the importance of choosing the ∆ partition as opposed to
∆2 in ensuring continuity of the associated R-functions. Observe that the
sets R(∆2), R(∆) and R(∆3) intersect (Rvachev 1974, p. 57). For example,
the function x1 + x2 − |x1 − x2| is an R-function for each of the above
partitions. At the same time, the function x1x2 is in R(∆3) and R(∆) but
not in R(∆2), and function x2

1x
2
2(1 − x1)

2 is in R(∆2) but not in R(∆3),
and so on.

One may wonder why we would bother with ∆3 to begin with. Such
a partition allows one to distinguish the zero value from all other values,
which is not possible with either ∆2 or ∆ and may be important for some
applications. On the other hand, R(∆3) contains some R-functions with
‘undesirable’ properties and 3-valued logic brings complications of its own
(Rvachev 1982). To cut a long story short, it turns out that all continuous
functions in R(∆3) are also in R(∆). Thus, we rely on Boolean algebra and
use only R(∆)-functions, but occasionally treat them as R(∆3)-functions.
This allows us to use 3-valued logic in order to identify and rule out any
situations where zero values may cause anomalies or ambiguities.

These and and other partitions are formally studied in Rvachev (1982),
Rvachev and Rvachev (1979), and Rvachev (1974). The partition ∆ was
used originally in Rvachev (1967), while ∆2 was employed in Rvachev,
Kurpa, Sklepus and Uchishvili (1973) and Rvachev and Slesarenko (1976)
which are more concerned with applications.
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4. From inequalities to normalized functions

In this section, we explain what is considered the main result of the theory
of R-functions. R-functions allow us to construct a smooth distance-like
real-valued function for any point set described by a logical predicate on a
collection of inequalities. The construction is essentially a syntactic substi-
tution.

4.1. Inequalities from logical predicates

A composition of R-functions involves applying an R-function to other R-
functions. But consider what happens if the arguments of an R-function
are some other arbitrary functions (that are not necessarily R-functions).
Consider a function f ≡ φ1∧

∗φ2, where φ1, φ2 are any real-valued functions.
By definition, the composite function f is positive if and only if both φ1 and
φ2 are positive. In other words,

(φ1 ∧
∗ φ2) ≥ 0 ⇐⇒ (φ1 ≥ 0) ∧ (φ2 ≥ 0), (4.1)

which means that a logical conjunction of two inequalities on the right-hand
side can be replaced by an equivalent single inequality on the left-hand side.
For example, recall that a rectangle is an intersection of two primitive sets
(a2 − x2 ≥ 0) and (b2 − y2 ≥ 0). Substituting these into (4.1), and using
R0-conjunction, we have

(a2 − x2) ∧0 (b2 − y2) ≥ 0 ⇐⇒ (a2 − x2 ≥ 0) ∧ (b2 − y2 ≥ 0).

The function in the inequality on the left-hand side is identical to the func-
tion in equation (1.2). By construction, the function is zero only on the
points of the rectangle’s boundary, and positive inside; furthermore the
constructed function is analytic everywhere except at the corners of the
rectangle, where both primitive functions are zero.

The above reasoning generalizes in a straightforward fashion to arbitrary
predicates on sets. Let real-function inequalities ωi(x1, . . . , xn) ≥ 0, i =
1, . . . , m define the primitive geometric point sets Ωi ⊆ E

n, and let Φ :
B

m → B be a predicate constructed using logical functions ∧,∨,¬. Then
the statement

Φ(S2(ω1), . . . , S2(ωm)) = 1 (4.2)

represents a set Ω ⊆ E
n of points where the predicate is true. The logic

function Φ defines the corresponding set-valued function Φ : E
nm → E

n,
constructed with set operations ∩,∪,−, respectively, so that

Ω = Φ(Ω1, . . . , Ωm). (4.3)

We seek a single real-function inequality f(x1, . . . , xn) ≥ 0 that defines the
composite object Ω, which is readily obtained following the general result
in Rvachev (1974).
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Theorem 3. Suppose the logic function Φ(X1, . . . , Xm) is the compan-
ion of a continuous R-function fΦ(x1, . . . , xm) and the corresponding set
function Φ maps closed sets into closed sets. If the closed set Ω ⊂ E

n is
represented as in (4.2), then it is also represented by the inequality

fΦ(ω1, . . . , ωm) ≥ 0. (4.4)

In other words, to obtain a real function inequality f ≥ 0 defining the
set Ω constructed from primitive sets (ωi ≥ 0), it suffices to construct an
appropriate R-function and substitute for its arguments the real functions ωi

defining the primitive sets Ωi. The proof of the theorem follows immediately
from the definition of R-functions, as expressed by equation (3.2), where
membership of a point in a set is identified by the non-negative sign of the
corresponding defining function evaluated at this point.

The restriction to closed sets in Theorem 3 is awkward. On one hand, it
would make sense to restrict our attention to the lattice of the closed sets
with operations of ∩, ∪. On the other hand, we do want the complement
operation, partly for convenience, but also because it is the companion to
the R-negation operation that behaves more like the pseudo-complement
(defined as the closure of the complement) than the usual complement.
For example, technically speaking, the theorem cannot be used with set
difference operation Ω1 \ Ω2, because

(ω1 ∧
∗ ω̄2) ≥ 0 ⇐⇒
 (ω1 ≥ 0) ∧ ¬(ω2 ≥ 0). (4.5)

We can get around this difficulty whenever the closure of ¬(ω2 ≥ 0) is
(−ω2 ≥ 0), since R-negation is defined as ω̄2 = −ω2. So, in this particular
case, we can obtain a pseudo-difference operation by using −ω2 on both
sides of the equivalence statement (4.5) in place of R-negation on the left,
and logical ¬ on the right-hand side. For the time being, we will rely on
such case-by-case analysis to construct equations and inequalities for curves,
surfaces, and regions in Euclidean space, but such difficulties need to be
accounted for when discussing the algorithmic construction of the Boolean
companion functions in Section 5.

4.2. Examples

Example 1. The three-dimensional model of a chess pawn, shown in Fig-
ure 4.1(a), can be constructed as a set expression adopted from Rvachev
(1967):

Ω = (Ω1 ∩ Ω2 ∩ Ω3) ∪ Ω4 ∪ Ω5,

where the primitive regions Ωi = (ωi(x, y, z) ≥ 0) are halfspaces defined in
Table 4.1. Following Theorem 3, a single inequality (ω ≥ 0) defining the
same point set Ω is obtained by syntactic substitution:

ω = (ω1 ∧
∗ ω2 ∧

∗ ω3) ∨
∗ ω4 ∨

∗ ω5 ≥ 0. (4.6)
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(a) ω = 0.5 (b) ω = 0 (c) ω = −0.5

Figure 4.1. Isosurfaces ω = c of function ω. The pawn is
defined implicitly by (ω ≥ 0) and its boundary by (ω = 0).

Table 4.1.

Primitive Ωi Function ωi

Ω1 solid of revolution ω1 = −z + 7
16

(√

x2 + y2 − 4.0
)2

Ω2 cylinder ω2 = 9.0 − x2 − y2

Ω3 horizontal slab ω3 = z(7 − z)

Ω4 sphere ω4 = 1 − x2 − y2 − (7 − z)2

Ω5 ellipsoid ω5 = 2 − x2 − y2 − 9(6 − z)2

Figure 4.1(b) shows the isosurface ω = 0 constructed with R0-functions and
computed by polygonization, while Figures 4.1(a) and (c) show isosurfaces
ω = 0.5 and ω = −0.5, respectively.

Example 2. In this case, the goal is to construct a function ω that van-
ishes on the dotted line boundary of a ‘flag’ shape shown in Figure 4.2.
The boundary of the flag itself consists of four segments: circular on the
right, sinusoidal on the top, linear on the left and the bottom of the flag.
In addition, the flag’s ‘handle’ is the dangling line segment that does not
bound any interior. Define four primitive halfspaces Ωi = (ωi ≥ 0) using the
functions in Table 4.2. It is easy to see that the bounded flag itself is simply
⋂4

i=1 Ωi, but the handle is more problematic. First of all it is a segment of
the line, not a halfspace. But we can always write the line as a halfspace
(−|ω3| ≥ 0), and intersect it with some region Ω5, say a unit circular disk
Ω5 = (1−(x−2)2−(y−2)2 ≥ 0), to select the required segment. The union
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(a) (b)

Figure 4.2. Implicit representation (ω = 0) of the one-dimensional
planar shape shown as a dotted line. (a) Plot of the function ω
defined in (4.7). (b) Normalized function ω1 constructed from ω
using (4.9).

Table 4.2.

Primitive Ωi Function ωi

Ω1 circular ω1 = 4.52 − (x + 2)2 − y2

Ω2 sinusoidal ω2 = 1 + 0.25 sin(πx) − y

Ω3 vertical linear ω3 = x + 2

Ω4 horizontal linear ω4 = y + 1

of the flag and the handle gives

Ω = (Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4) ∪ ((−|ω3| ≥ 0) ∩ Ω5).

Applying Theorem 3 yields a single inequality constructed with R-functions:

ω = (ω1 ∧
∗ ω2 ∧

∗ ω3 ∧
∗ ω4) ∨

∗ (−|ω3| ∧
∗ ω5) ≥ 0. (4.7)

The function ω constructed with R0-functions is plotted in Figure 4.2(a).

4.3. Distance and normalized functions

Given a closed point set Ω, the Euclidean distance function d : E
n → R

defined by (2.5) gives for every point of space the shortest distance to the
boundary ∂Ω. As we discussed in Section 2, distances play an important
role in many applied computational problems. Traditionally, the distance
functions are written in a closed form for simple geometric shapes, for
example a line, a plane, a circle, a sphere, but more complex shapes usually
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involve procedural definitions, numerical computations, and/or approxima-
tions. Furthermore, the distance function is not differentiable at all points
that are equidistant4 from two or more points of ∂Ω, making them unsuit-
able for use in any application where smoothness is required.

Both difficulties are bypassed by replacing the exact distance functions
with their mth-order approximations in the neighbourhood of ∂Ω. Let ν be
the unit vector at point p ∈ ∂Ω pointing away from ∂Ω towards the points
that are closer to p than to any other point in ∂Ω. In other words, ν is the
unit normal on regular (smooth) points of the boundary ∂Ω, but it is also
well defined in neighbourhoods of all other points, including sharp corners.
A suitable mth-order approximation of the distance function d is a function
ω whose derivatives agree with d up to the order m in all normal directions
ν. In other words, we say that the function ω is normalized up to the mth
order if its directional derivatives Dk

ν in the direction ν near ∂Ω satisfy

Dνω = 1, Dk
νω = 0, k = 2, 3, . . . , m. (4.8)

The exact distance function d is normalized to any order, and equations of
the form d = 0 are often called normal.

Without additional assumptions, there is no reason to expect that a
function f constructed using the theory of R-functions should possess any
distance-related properties. But suppose that we constructed a function
ω ∈ Cm such that ω(p) = 0 and D1

νω(p) 
= 0 on all points p ∈ ∂Ω. Then
the scaled version of this function

ω1 ≡ f(f2 + ‖∇f‖2)−
1

2 ∈ Cm−1 (4.9)

is normalized to the first order. Straightforward differentiation confirms
that Dνω1 = ‖∇ω1‖ = 1 on all regular points of ∂Ω. Figure 4.2(b) shows
the plot of the function ω1, normalized to the first order by applying (4.9) to
the function ω defined in (4.7) and plotted in Figure 4.2(a). Furthermore,
if ω1 is normalized to the first order, then the function ωm normalized to
the mth order may be constructed by recursively subtracting the non-zero
contribution of the higher-order terms:

ωm = ωm−1 −
1

m!
ωm

1 Dm
ν ωm−1. (4.10)

This method of normalization is particularly effective as an analytical tool,
or when the initial function ω is relatively simple. However, if the func-
tion ω = f(ω1, . . . , ωm) is constructed as an R-function on a large number
of primitive functions ωi in (4.4), it is not likely to satisfy the required
smoothness conditions, and the method becomes impractical.

4 This includes all points on the medial axis, or on the Voronoi diagram of ∂Ω.
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A more constructive approach to normalization is to start with analytic
or sufficiently smooth primitive functions ωi that are already normalized,
and then choose the R-function f so that it preserves the normalization
at all regular points of the boundary ∂Ω. In particular, we observed in
Section 3.6 that many of the R-functions themselves are normalized near
their zero level sets, as is evident from expression (3.8). This is all that is
required to establish the following result.

Theorem 4. Suppose that the argument xi appears in the Rp-function
f(x1, x2, . . . , xn) only once and has an inversion degree5 of r. Let the func-
tions ω1, ω2, . . . , ωn be in Cs and the boundary ∂Ω = (f(ω1, ω2, . . . , ωn) =
0). Then, at every regular point p ∈ ∂Ω where

ωi(p) = 0, ωj(p) 
= 0, j = 1, . . . , n, j 
= i,

for every direction µ and k ≤ s < p,

Dk
µf(ω1, ω2, . . . , ωn) = (−1)rDk

µωi.

Thus, the normalization of functions constructed with Rp-functions, fol-
lowing Theorem 3, comes at no extra cost, provided that the primitive
functions ωi are themselves normalized to the required order. Further-
more, if a point p ∈ ∂Ω belongs to the boundary of exactly one primitive
(ωi(p) = 0), then all differential properties of the composite function f at p
are completely determined by the differential properties of ωi(p). Rvachev
(1982) derives sufficient conditions for Theorem 4 to hold with any sys-
tem of R-functions, and proves specific results for other popular choices of
R-functions.

5. The inverse problem of analytic geometry

5.1. The general problem

We now appear to have all the ingredients needed to solve the general prob-
lem of inverse analytic geometry. For any closed semi-analytic set Ω, the
problem is solved in two steps: first represent Ω by a logical predicate Φ on
analytic primitives (ωi ≥ 0), then translate this logical predicate into the
corresponding inequality (ωΦ ≥ 0) by syntactic substitution, as prescribed
by Theorem 3. If this inequality represents a set Ω, then every point p on
the boundary ∂Ω has the property that ωΦ(p) = 0. If there are no other
points p 
∈ ∂Ω where ωΦ vanishes, this translation solves the inverse prob-
lem of analytic geometry. We also saw that R-functions may be chosen to

5 Inversion degree of the argument x is the number of times subexpressions with x are

negated during evaluation of f . For example, in x1 ∧p (x2 ∨p x3) the inversion degree
of x1 is 1, the inversion degree of x2 is 2, and the inversion degree of x3 is 3.
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preserve the distance properties of the primitive functions ωi at the regular
points of the boundary ∂Ω to any desired order.

The above observations may be put to immediate practical use with a new
generation of geometric languages that describe complex shapes by recur-
sively combining simpler shapes using various set operations. An example
of such a language is Constructive Solid Geometry (CSG) representation
(Requicha and Voelcker 1977) that was particularly popular in the early
days of solid modelling. Rvachev and Manko (1983) developed a similar
language for describing domains of boundary value problems by overload-
ing the usual logic operations with R-functions that combine basic primi-
tives (ωi ≥ 0) of several common types. The R-function constructions now
appear in the core of modern computer graphics languages that produce
implicit representations ω = 0 of shapes and scenes, for example, in Pasko
et al. (1995) and Wyvill, Guy and Galin (1999).

However, in many practical situations, point sets are given not in the re-
quired predicate form, but are more naturally described by their boundaries.
Engineers and scientists tend to sketch or sculpt the shapes of interest, and
digitally acquired shapes are often defined by reconstructed boundaries.
Manually constructing predicates Φ or, equivalently, set-valued expressions
Φ for such shapes is often a non-trivial proposition. We do not usually
think of a rectangle as the intersection of two unbounded strips, and even
the simple predicate expressions for the point sets in the last section are
not obvious or unique. Thus, the general problem of the inverse analytic
geometry may be formulated as follows.

P1: Given a piecewise (semi-)analytic boundary Γ =
⋃

Γi of a set Ω, where
Γi ⊆ (γi = 0), construct a function ω such that Γ = (ω = 0) and ω is
normalized to some order p on all regular points of the boundary Γ.

Both the boundary Γ and the set Ω are closed semi-analytic sets and, as
such, can be represented by set expressions as required by Theorem 3. But
these set expressions are neither known nor unique. Accordingly, there
are two generic approaches to solving this problem using the theory of R-
functions described below: the first one focuses on set representation of Γ
and the second on set representation of the set Ω itself. Both approaches
are based on the well-known fact that every Boolean set expression may be
represented in a disjunctive canonical form as a union of intersection terms.

5.2. Normalized functions from boundaries

In many applications, it is understood that Γ = ∂Ω is the boundary of some
domain Ω with non-empty interior, and we will consider such situations in
Section 5.3. But in general this need not be so, and when Γ does not bound
any interior, we have Γ = Ω. The problem of constructing the normalized
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function ω such that ω = 0|Γ is solved by constructing normalized functions
ωi for portions Γi of the boundary and then combining them, using R-
functions in both steps of the procedure. In fact, we used this method in
constructing the function ω in Example 2. The key steps are described
in Rvachev (1982), but for detailed analysis, extensions, and experimental
results the reader is referred to Shapiro and Tsukanov (1999a) and Biswas
and Shapiro (2004). We will refer to the two steps in this construction
procedure as trimming and joining , respectively.

Trimming

The trimming step of the construction procedure assumes that a portion Γi

of the boundary Γ may be represented as (γi = 0)∩Λ, where γi is normalized
to some order and represents an unbounded curve, surface, or hypersurface
(γi = 0) ⊃ Γi, and Λ ⊂ E

d is a full-dimensional region that contains its
portion Γi. If Λ is defined implicitly by (λ ≥ 0) and λ is also normalized,
then this construction translates directly into ωi = −(−|γi| ∧

∗ λ), with
(ωi = 0) defining the trimmed portion of Γi. This achieves the desired result,
unless one is concerned with differential properties of ωi. It is expected
that ωi is not differentiable on the points of the trimmed boundary Γi,
but the constructed function ωi is not differentiable on all points where
γi = 0. It is also easy to check that ωi is normalized on all regular points
of Γi, but not near its end points where γi = λ = 0. Several improved
alternative approaches to trimming are known. For example, it can be
shown (Sheiko 1982) that

ωi =

√
√
√
√

γ2
i +

(√

λ2 + γ4
i − λ

)2

4
(5.1)

is normalized on all regular points of Γ, twice differentiable on the boundary
of Λ, and analytic on all other points p 
∈ Γi. Normalization at the end
points of Γi depends on the local geometry of the intersection between the
sets (γi = 0) and (λi = 0) and can be guaranteed via suitable coordinate
transformation. (See examples in Shapiro and Tsukanov (1999a).)

The above approach to trimming works well for curve segments, because
both planar and space curves can be trimmed by relatively simple trim re-
gions, such as spheres, boxes, etc., for which normalized implicit represen-
tation (λ = 0) are easily constructed. Two difficulties arise when Γi ⊂ E

3

is a trimmed surface. In this case, the trim region Λ may be described
by a complex set-theoretic expression, closely related to Constructive Solid
Geometry representations (Rossignac 1996). We will discuss how such ex-
pressions may be constructed automatically in Section 5.3.

The second issue relates to the differential properties of the function λ.
Suppose that a trim region Λ = Φ(Λ1, . . . , Λn) is described by a set-theoretic
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(a) triangle (b) polygonized curve (c) triangulated surface

Figure 5.1. Normalized functions, constructed for various sets Γ by the
trim-and-join method, are differentiable on all points not in the set Γ.

expression Φ, where Λj are primitive halfspaces (λj ≥ 0). Following Theo-
rem 3, we immediately obtain the implicit representation for Λ = (λ ≥ 0),
where λ = fΦ(λ1, . . . , λn) is an R-function corresponding to Φ. As we
discussed earlier, this function may not be differentiable at certain ‘cor-
ner points’ where more than one λj vanish. These points typically do not
lie on the hypersurface (γi = 0), but the singularities will be inherited by
ωi in equation (5.1). The difficulty is resolved by noticing that the set-
theoretic representation of the trim volume Φ(Λ1, . . . , Λn) is needed only
on the surface (γi = 0) being trimmed. Then constructing λ = fΦ using the
conditional R0-functions (3.7) with s2 = aγk

i guarantees that the function
λ will be analytic everywhere in E

3 except at the edges of the trimmed sur-
face Γi. Parameters a, k can be used to control the overall shape of the trim
region away from the surface. Figure 5.1(a) shows a normalized function
for a triangle from Biswas and Shapiro (2004), where this method was pro-
posed. In this case, Λ is the unbounded triangular prism perpendicular to
the plane of the triangle. The function λ was constructed using the condi-
tional R-conjunction on the three linear halfspaces bounding the prism. The
function shown is twice differentiable on all points away from the triangle.

Joining

Suppose that Γ =
⋃

Γi and we used the trimming operations described
above to construct normalized functions ωi such that Γi = (ωi = 0). We
now want to construct a single function ω such that Γ = (ω = 0). By the
above construction, ωi is strictly positive on all points p 
∈ Γi. Applying
Theorem 3 and De Morgan’s law to the union

⋃

i Γi gives

⋃

i

(ωi = 0) =
⋃

i

(−ωi ≥ 0) =

( ∗∨

i

(−ωi) ≥ 0

)

=

( ∗∧

i

ωi ≥ 0

)

. (5.2)
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In particular, applying the ∧p operations to normalized ωi ensures the nor-
malization of the resulting function ω to the pth order on all regular points
of Γ.

Notice, however, that the functions ωi are non-negative everywhere, and
we are only interested in the zero set of the constructed function ω. This
implies that the union of sets Γi is represented by the product of the respec-
tive functions ωi. Since we also want to guarantee that ω is normalized, we
replace multiplication with the Rp-equivalence operation defined as

x ∼p y = xy(|x|p + |y|p)−1/p, (5.3)

and construct the required function ω as

ω = ω1 ∼p ω2 ∼p · · · ∼p ωn.

Once again, the function ω is normalized if each ωi is normalized. Further-
more, the Rp-equivalence operation is associative, whereas the Rp-conjunc-
tion used in equation (5.2) is not. As should be expected, neither joining
operation maintains normalization at the corner points where Γi ∩ Γj 
= ∅.
The reader is referred to Shapiro and Tsukanov (1999a) and Biswas and
Shapiro (2004) for additional discussion of differential properties of ω in the
neighbourhoods of the corners, as well as possible means to control them.
See also Section 7.3 for a related discussion.

The described trim-and-join technique can be used to construct an im-
plicit representation (ω = 0) for a variety of point sets Γ, including space
curves, polygonized surfaces, polyhedra, piecewise-algebraic boundary rep-
resentations, dimensionally heterogeneous complexes, etc. Figures 5.1(b)
and (c) show examples of normalized functions from Biswas and Shapiro
(2004) constructed by the described method.

One disadvantage of the above approach is that the constructed function
ω is strictly positive everywhere away from the boundary Γ, and thus does
not distinguish any interior points of Ω even when they are bounded by
Γ. For example, the Jordan–Brouwer separation theorem (which subsumes
the Jordan Curve theorem) guarantees that the bounded interior of Ω ⊂
E

3 is determined unambiguously whenever Γ is a compact two-dimensional
C0-manifold surface in E

3. In this case, the signed function ω may be
constructed for Ω, such that ω > 0 for all points in the interior int Ω, and
ω < 0 for all points p 
∈ Ω. This can be achieved by multiplying ω by
the characteristic function ξ(p, Ω) defined to be 1 when p ∈ Ω and −1
otherwise, but algorithms for computing ξ usually require non-trivial data
structures to represent ∂Ω and numerically sensitive algorithms, for example
to compute the winding number and/or mod 2 intersection computations
(Shapiro 2002, O’Rourke 1998). We now consider an alternative approach
that relies on constructing set-theoretic representation for the Ω (and not
just its boundary ∂Ω).
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5.3. Signed functions via set expressions

When ∂Ω bounds a non-empty bounded interior int Ω, we know that the
closed semi-analytic set Ω may be represented explicitly by a set-theoretic
expression Φ on some set of primitive analytic halfspaces. We also wish
for ωΦ to be a signed function for Ω, that is, ∂Ω = (ωφ = 0) and int Ω =
(ωφ > 0), but we shall see that this may not always be the case. The general
problem P1 may be restated as follows.

P2: Given the boundary ∂Ω =
⋃

∂Ωi of the set Ω, let H be the set of
bounding halfspaces Ω+

i = (ωi ≥ 0) and Ω−
i = (−ωi ≥ 0) induced from

boundary portions ∂Ωi. Construct a set expression Φ(Ω±
1 , . . . , Ω±

m)
such that Ω = Φ, and ωΦ is a signed function for Ω.

When ∂Ω bounds some non-empty interior, the halfspaces Ω+
i = (ωi ≥ 0)

may be chosen to include some points in the interior int Ω. Below we con-
sider this problem for three different classes of sets Ω: simple two dimen-
sional polygons, general semi-analytic sets, and manifold solids.

Simple polygons and extensions

If Ω ⊂ E
2 is a simple polygon, its boundary ∂Ω is a union of n line seg-

ments ∂Ωi. Thus, (ωi = 0) is a line, Ω+
i is an induced closed linear half-

space, and Ω−
i is its pseudo-complement. We will assume that the pos-

itive side of ωi coincides with the interior of the polygon Ω. It is easy
to see that Ω may be represented by a set expression using only half-
spaces induced from the polygon’s edges. Let A(L) be the linear arrange-
ment of the collection of lines L = {(ωi = 0)}. It consists of all k-cells
σk formed by nonempty intersections of the induced halfspaces and their
pseudo-complements (Edelsbrunner 1987). It should be obvious that Ω is
the union of all two-dimensional σ2

j ⊆ Ω. The resulting set expression has
the unique canonical disjunctive form

Φ =
⋃

j

⋂

i

Si, (5.4)

where Si ∈ {Ω+
i , Ω−

i }. Expression (5.4) is inefficient, but can be optimized
in a number of ways using Boolean optimization techniques.

Alternatively, the optimal representation of a polygon, with every prim-
itive Ω+

i appearing exactly once, may be constructed efficiently using the
algorithm described in Dobkin, Guibas, Hershberger and Snoeynik (1988).
Any polygon can be represented as the intersection of two or more polygo-
nal semi-infinite chains as illustrated in Figure 5.2(b). The chains intersect
at the vertices of the polygon’s convex hull. Each of the chains can be split
recursively into smaller subchains. If the split occurs at a concave vertex
of the original polygon, then the subchains are combined using set union;
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(a) a polygon and its convex hull
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(b) a polygon can be represented
as the intersection of four
polygonal chains

Figure 5.2. A set representation for any polygon can be constructed using
union and intersection on polygonal chains associated with polygon’s edges.

the subchains are combined using intersection at the convex vertices of the
original polygon.

Every subexpression of the resulting set expression corresponds to some
polygonal chain. For the polygon in Figure 5.2, the resulting expression is

(b ∪ (c ∩ d) ∪ e)((f ∩ g) ∪ h ∪ (i ∩ j))((k ∩ l) ∪ m ∪ n) ∩ (o ∩ a),

where the literals correspond to the linear halfspaces Ω+
i associated with

the polygon edges. The expression is the intersection of four subexpressions
corresponding to the four chains shown in Figure 5.2. Each chain is either
the union or the intersection of its subchains. For example, the chain C1 is
formed by three subchains, b, c ∩ d, and e, meeting at the vertices of the
convex hull of C1; since these vertices are concave, C1 is represented as a
union of the three subchains, b ∪ (c ∩ d) ∪ e, and so on.

A similar algorithm was articulated much earlier by Rvachev et al. (1973),
who proposed recursively splitting the polygonal chains at the vertices of
the convex hulls of the bounded (trimmed) polygonal chains, connected by
the dashed lines in Figure 5.2(a). A counter-example in Peterson (1986)
shows that such an algorithm does not always result in the correct expres-
sion. Other related algorithms to construct set expressions for polygons are
described by Tor and Middleditch (1984) and Woodwark and Wallis (1982).

The construction algorithms for simple polygons based on the convex
hull may be extended to some other point sets. Non-simple polygons are
easily represented as a set combination of simple polygons. The approach
may also be generalized to a large class of curved polygons (Shapiro 2001).
Two-dimensional set representations are often used to construct represen-
tations for three-dimensional solids by translational or rotational extrusion
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of a planar shape in the direction normal to the plane (Woodwark and
Wallis 1982, Peterson 1986, Shapiro and Vossler 1991b). In this case, lin-
ear halfplanes become either linear or quadric halfspaces in E

3. Algorithms
based on the convex hull can also be applied directly to some, but not all,
three-dimensional polyhedra (Woo 1982, Kim and Wilde 1992).

General semi-analytic sets

General theoretical algorithms for constructing set expressions for semi-
algebraic (but not semi-analytic) sets are known; for example, see Basu,
Pollack and Roy (2003, 2005) and references therein. At the time of writing,
none of these algorithms is practical enough to deal with realistic engineering
problems, even when the space dimension and the number and degree of all
polynomials are fixed and imply polynomial complexity. We seek a more
intuitive, geometric characterization of the construction problem that can
be used in restricted practical situations.

Conceptually, the approach to constructing set expressions for simple
polygons, using the arrangement of primitives, generalizes to arbitrary semi-
algebraic and semi-analytic sets (Shapiro 1991, 1997). It is based on the
observation that a set of 2n (semi-)analytic primitives (±ωi ≥ 0) ⊂ R

d

generates a finite distributive lattice L of closed subsets of R
d under oper-

ations of ∩, ∪. This implies that Ω is an element of L if and only if it can
be represented in the disjunctive canonical form (5.4). The key difference
between the linear arrangement and the general case is in the intersection
terms Jk =

⋂

i Si, Si ∈ {Ω+
i , Ω−

i , (ωi = 0)}. They are no longer convex sets
but can be heterogeneous, possibly disconnected, sets of arbitrary dimen-
sion. A non-empty intersection term Jk is called a join-irreducible element
of the lattice L if

A ∪ B = Jk =⇒ (A = Jk) or (B = Jk),

for any sets A, B ∈ L . In geometric terms, Jk is either a set that does
not contain any other sets of the lattice, or Jk contains other elements as
proper subsets. In the arrangement A{(ωi = 0)} of analytic primitives, the
sets Jk play the same role as the k-cells σk play in the linear arrangement
of lines. It follows that, to construct a set expression Φ(Ω±

1 , . . . , Ω±
2 ) for a

semi-analytic set Ω, we need to compute the decomposition of R
d into join-

irreducible sets Jk of L; the union of Jk ⊆ Ω yields the disjunctive canonical
form (5.4) for Ω.

A potential problem with this approach is that Ω may not be an ele-
ment of the lattice L. Consider the shape Ω in the flag example (Exam-
ple 2). Four primitive halfspaces ωi, i = 1, 2, 3, 4 were induced from the
given piecewise description of ∂Ω. But the flag’s handle is a trimmed por-
tion of the line (ω3 = 0) and cannot be represented without introducing
an additional (non-unique) halfspace (ω5 ≥ 0). This happened because the
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handle
Mj

(a) Whitney regular
stratification of Ω

Jk

(ω1 ≥ 0)

(ω3 = 0)

(−ω4 ≥ 0)

(b) join-irreducible element Mj ⊂ Jk �⊂ Ω

Figure 5.3. The flag shape Ω is not describable
by the halfspaces induced from ∂Ω.

join-irreducible element

Jk = (ω1 ≥ 0) ∩ (ω3 = 0) ∩ (−ω4 ≥ 0)

contains the flag’s handle but Jk 
⊆ Ω. See Figure 5.3. This example
illustrates the key difficulty in constructing set representations. The set
of halfspaces H induced from the boundary ∂Ωi may not be sufficient for
representing Ω, because the decomposition of space into the join-irreducible
elements may not be fine enough. In this case, we say that the set Ω is not
describable by the primitives in H.

Apparently, describability of Ω has something to do with the ability to
represent some subsets of Ω, such as in the example above. What are these
subsets and can they be enumerated? Any semi-analytic d-dimensional
shape Ω can be stratified into k-manifold cells Mj , for k = 0, . . . , d, such
that all points in Mj have the same signs with respect to all primitives in H.
Because we are concerned with closed sets, we require that the closure of cells
satisfy cl Mj ⊆ Ω, which in turn requires that the closure of every cell Mj is
a union of other cells in the stratification. The coarsest (and therefore min-
imal) stratification satisfying these conditions is the sign-invariant Whitney
regular stratification into connected strata (Whitney 1965, Shapiro 1997).

Theorem 5. Let L be a finite distributive lattice generated by a set H of
halfspaces (±ωi ≥ 0), i = 1, . . . , n. Set Ω ∈ L if and only if, for every k-cell
Mj ⊂ Ω in the connected sign-invariant Whitney regular stratification of Ω,
cl Mj ⊆ Jk ⊆ Ω, for some join-irreducible element Jk ∈ L.
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Mj

(a) cell Mj in Whitney regular
stratification of Ω

Jk

Jk

boundary of

separating

halfspace

(b) the disconnected join-irreducible
element Jk �⊂ Ω

Figure 5.4. The shape Ω in (a) is not describable by the halfspaces
induced from ∂Ω, shown in (b), because the join-irreducible element Jk

containing the cell Mj is separated by the boundary ∂Ω into two
components. Additional separating halfspaces are needed to represent Ω.

The proof follows from results in Shapiro (1991). The theorem reaffirms
that the set Ω is not describable if it cannot be represented as a union of
join-irreducible elements, but it also explains why this happens. In general,
when the set H of primitive halfspaces is induced from the boundary ∂Ω,
there is no guarantee that the intersection terms defining the join-irreducible
elements Jk satisfy the conditions of the theorem. This could happen when
cl(ωi > 0) 
= (ωi ≥ 0), because the latter could contain some additional
points. Another common situation is that Mk are connected sets, but the
set Jk \ ∂Ω may contain several connected components. See the example
in Figure 5.4. In all such cases, the set Ω is not describable by the set
of halfspaces H, and additional separating halfspaces must be used in con-
structing any set expression for Ω. The purpose of the separating halfspaces
is to break up the problematic join-irreducible elements into smaller join-
irreducible elements satisfying the conditions of Theorem 5. See Shapiro
(1997) for more details.

The above observations suggest that, in order to construct a set expression
for Ω, we may need to construct the Whitney regular stratification of Ω,
compute the relevant join-irreducible intersection terms Jk, add separating
halfspaces as needed, and finally construct the disjunctive canonical form.
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Theoretically, all these steps are feasible, at least for semi-algebraic sets,
but no practical algorithms are available, and this situation is not likely
to change in the foreseeable future. The next section outlines a pragmatic
and fully implemented approach to solving the describability problem for a
limited but useful class of three-dimensional solid shapes.

Set expressions for solids

For a recent survey on solid modelling and many additional references, the
reader is referred to Shapiro (2002). A closed bounded semi-analytic set
Ω ⊆ E

d is called a solid if it is closed regular , that is, cl(int Ω) = Ω
(Requicha 1980). A solid can be represented on a computer using one
of many representation schemes, but the most common way to represent
a solid model on a computer is by its boundary ∂Ω stored as a union of
faces ∂Ω =

⋃

i ∂Ωi. It is also common to assume that ∂Ω is a C0 orientable
(d − 1)-dimensional manifold, and every face ∂Ωi is a subset of an analytic
or algebraic hypersurface (ωi = 0). Two-dimensional polygons and three-
dimensional polyhedra (curved or linear) are widely recognized examples of
solids. We shall assume that ωi are known, which is the case for polyhedral
solids or solids bounded by second-degree surfaces (but may not be true for
more general solids bounded by parametric surfaces).

If a solid Ω is not describable by halfspaces in H, there is at least one
join-irreducible element Jk that intersects both the interior int Ω and the
exterior eΩ. This means that for some points p ∈ int Ω and q ∈ eΩ, ωi(p)
and ωi(q) have the same sign for all primitive functions ωi used to define
the halfspaces in H. On the other hand, because Ω is a solid, such points
p and q must be separated by the boundary ∂Ω. Figure 5.4 demonstrates
the situation for a simple two-dimensional solid shape. These observations
suggest that the construction of the additional separating halfspaces G can
be guided by the faces ∂Ωi in the boundary representation. For example,
the following result is proved in Shapiro (1991).

Theorem 6. Let Ω be a solid, {∂Ωi} a set of faces in the boundary rep-
resentation, and H a set of halfspaces induced from the faces. Suppose
that the interior of every face ∂Ωi is separated from the rest of the surface
(ωi = 0) \ ∂Ωi by a family G of linear halfspaces (gk ≥ 0). Then Ω is
describable by H ∪ G.

If Ω is a curved polygon with edges that do not change their sign of cur-
vature, Theorem 6 implies that the polygon is describable by the halfplanes
H induced from the polygon’s edges and the linear halfplanes G associated
with polygon’s chords (Shapiro and Vossler 1991b). Figure 5.5 illustrates
this result on a simple two-dimensional solid. Notice that in this case, the
additional halfspaces are not necessary, because Ω is the union of three
circular halfspaces. For three-dimensional solids, the theorem requires all
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(a) the boundary ∂Ω is a
union of three circular arcs

(b) separating halfplanes
associated with chords

Figure 5.5. Illustration of Theorem 6. A set of halfspaces associated
with the chords is sufficient but not always necessary for describability
of Ω and its pseudo-complement cl(−Ω).

faces to be bounded by planar curves, but the construction of the linear
halfspaces G may be fully automated in many cases. Linear separators may
also suffice when a solid’s boundary contains non-planar edges, but in gen-
eral this is not true. For example, when the functions ωi are polynomials
of degree k, the degree of separating primitives may be ≥ k/2. Shapiro and
Vossler (1993) used the above results to design and implement a fully auto-
mated procedure for constructing set representations for solids bounded by
second-degree surfaces.

Optimization and signed functions
Once Ω is known to be describable by halfspaces in H ∪ G, it could be rep-
resented in the canonical disjunctive form (5.4), but that is probably the
most inefficient way to represent Ω. There are at least two different possi-
bilities for optimization. First, the constructed set G is sufficient, but not
all halfspaces in G are usually necessary for representing Ω. A (non-unique)
minimal set G may be determined by incrementally removing halfspaces
from G until the conditions of Theorem 5 are violated. In the example of
Figure 5.5, all chordal halfspaces would be removed. Secondly, standard
Boolean optimization techniques (Lawler 1964) may be used to optimize
the constructed function Φ.

Note that one can write down 2n distinct intersection terms, but there
is only a polynomial number of non-empty join-irreducible elements Jk in
the arrangement A{(ωi = 0)}. Thus, the canonical form (5.4) may be com-
puted as a decomposition of Ω and represented by a set of characteristic
points, one point from each Jk. The intersection terms may be optimized
by dropping all those halfspaces that do not bound the particular Jk. Con-
tainment relationships between the intersection terms may be exploited to



Semi-analytic geometry with R-functions 275

obtain a nearly optimal union of intersection expressions, which intuitively
correspond to computing a minimal convex cover of Ω (O’Rourke 1982).
These observations were used to design practical algorithms for optimizing
set representations for polygons and solids in Shapiro and Vossler (1991a,
1991b).

A more serious problem is that the function ωΦ obtained from the opti-
mized expression Φ via Theorem 3 may not be properly signed. It is true
that ∂Ω ⊆ (ωΦ = 0), but ωΦ may also be zero at some points in the interior
int Ω. In Figure 5.5, if Φ is the union of three circular disks, then ωΦ = 0
at the point where all three circles intersect. Recall from Section 3 that the
root cause of this problem lies in the adopted definition of R-functions that
does not distinguish between zero and the positive numbers. On the other
hand, notice that ωφ is strictly negative at all points p 
∈ Ω. Similarly, if Υ
is a set representation for the pseudo-complement of Ω defined as cl(−Ω),
then the function −ωΥ > 0 on all points p ∈ int Ω. It follows that the
function ωΦ−ωΥ is the signed normalized function for ∂Ω solving the prob-
lem P2 (Shapiro 1994). Notice that Theorem 6 applies to both Ω and its
pseudo-complement. For example, the chordal halfplanes in Figure 5.5(b)
are also sufficient for representing cl(−Ω) and, in this case, they are also
necessary.

The above solution is general, but it is inelegant and expensive because it
requires constructing set representations twice: once for the set Ω and again
for its pseudo-complement cl(−Ω). It is reasonable to ask if this double effort
may be avoided and, if so, under what conditions. For example, the function
−ωΥ may not be properly signed outside of Ω, but it has all the properties
required by the Kantorovich’s method for solving boundary value problems
and its generalizations, as described in Section 7. For solid models, Shapiro
(1999) showed that the function ωΦ is properly signed if and only if the
set expression Φ and its dual6 represent closed regular sets. Examples of
such set expressions include set expressions for simple polygons computed
by the recursive decomposition algorithm in Section 5.3, and monotone set
expressions using primitives from a simple arrangement.

6. Geometric modelling

The solution to the inverse problem of analytic geometry afforded by R-
functions encodes the geometric information in terms of sufficiently smooth
and normalized real-valued functions. This, in turn, allows reformulation of
many geometry-intensive computational problems in terms of simpler prob-
lems that can be solved using classical tools and algorithms for dealing with

6 A dual of a set expression Φ is obtained from Φ by complementing all primitives and
changing every ∩ to ∪ and vice versa.
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such functions. This section briefly surveys several such applications, with
particular focus on those areas where significant advances depend specifi-
cally on properties of R-functions.

The theory of R-functions remained largely unknown to Western re-
searchers until the late 1980s, and even after its initial exposure many sim-
ilar concepts were developed independently in the former Soviet Union and
in the West. This brief survey does not attempt to be comprehensive or
to establish priority among the proposed ideas. Over the last thirty years,
geometric modelling has blossomed as a discipline, with implicit shape rep-
resentations of the form ω = 0 becoming increasingly popular and now
used widely. Many construction methods for such representations are avail-
able, as described, for example, by Bloomenthal (1997), Velho, Gomes and
de Figueiredo (2002), and others.

The popularity of implicit representations can be attributed to several
factors. It is conceptually a very simple representation of a shape that de-
termines point membership via the sign of the defining function ω. It puts
no restrictions on the topological properties of the represented sets, but a
variety of computational techniques have been developed to parametrize and
render the set boundaries when they are manifold. These include the march-
ing cube algorithm (Lorensen and Cline 1987), polygonization (Bloomenthal
1988), and other numerical continuation methods for piecewise-linear ap-
proximation of manifolds (Allgower and Georg 1990). Volumetric scan-
conversion of such shapes is achieved via ray casting (Roth 1982), computed
by intersecting (a grid of) lines with the implicit representation (ω = 0).

6.1. Point membership classification

Computer modelling of complex shapes (point sets) as set combinations of
simpler point sets was called ‘constructive geometry’ by Ricci (1973), who
suggested that a three-dimensional point set may be represented as X =
f−1(0, 1] where f is a non-negative real-valued function. He then observed
that the set (pseudo-)complement is defined by 1/f , the set operations ∩
and ∪ can be encoded in terms of max and min functions, respectively, and
proposed their Lp-norm and polynomial approximations for construction
of increasingly complex shapes and images. Ricci’s representations have
remained popular in many geometric modelling application: for example,
see Storti, Ganter and Nevrinceanu (1992) and Blechschmidt and Nagasuru
(1990). More generally, the wide use of Constructive Solid Geometry (CSG)
(Requicha and Voelcker 1977) also promoted the use of min/max operators,
for example for scan-converting CSG representations into a volumetrically
defined Euclidean distance map (Breen, Mauch and Whitaker 1998), or
for reformulating the boundary evaluation problem as a level-set marching
method (Sethian 1996).
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Translation of the theory of R-functions into English (Shapiro 1988) led to
a widespread adoption of other systems of R-functions for computer graphics
and shape modelling applications. Notably, Pasko et al. (1995) developed
a powerful geometric language for computer graphics based on R-functions,
which inspired others to add R-functions as basic geometric operations for
combining functionally (implicitly) defined point sets: for example, Wyvill
et al. (1999) and Fougerolle, Gribok, Foufou, Truchetet and Abidi (2005).
Use of R-functions in solid modelling remains limited, partly because asso-
ciating R-functions with regularized set operations is technically incorrect.
The resulting sets (ω = 0) may not be closed regular and may include points
in the interior of the solid, as we discovered in Section 5.3. On the other
hand, such non-regular and interior points may be identified from extremal
properties of the constructed function ω, and every solid shape may be rep-
resented by a sufficiently smooth signed function ω using methods described
in Section 5.3 (Shapiro 1994).

6.2. Blending

Unions and intersections of smooth shapes create sharp edges and corners,
which may be undesirable in many applications. Such sharp features are
the source of stress concentrations and other singular behaviours, cannot be
manufactured by many manufacturing processes (for example, metal cast-
ing, stamping, etc.), and may not be aesthetically pleasing. The procedure
for smoothing the sharp edges and corners is commonly known as blending
(see Woodwark (1988) for an introductory survey of blending techniques).
Ricci’s operations and other polynomial approximations of R-functions are
examples of global blending because the smoothing affects all points of the
shape’s boundary. In most practical situations, it is desirable to blend sharp
features locally and in range-controlled fashion, for example with the desired
radius as a function of distance from the feature, so that the points some
distance away are not affected by the blends.

A general formulation for blending was proposed by Rockwood and Owen
(1987). Suppose we want to blend the intersection of two implicitly defined
primitive shapes (ωi ≥ 0), i = 1, 2. Construct a binary blend function B12 :
R

2 → R that blends the intersection of two linear halfspaces, say (x ≥ 0) and
(y ≥ 0). Then the blend of the desired intersection is simply B12(ω1, ω2).
A variety of blending functions B12 can be used, including superelliptic,
circular, variable-radius, and others. It is also observed that n-primitive
blending functions B12···n can be constructed directly, or if a solid is defined
constructively using set operations on implicitly defined primitives, then
simply substituting B12 for the intersection and −B12(−ω1,−ω2) for the
union blends all sharp features in the resulting shape. Rockwood (1989)
explains (and resolves) several difficulties with this approach, including the
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(a) the original model from
Figure 4.1(b)

(b) the normalized and
blended model

Figure 6.1. The isosurface of the pawn in Figure 4.1(b)
after all primitives are normalized and all R-functions are
replaced by the conditional R-functions B12 with ρ = 0.25.

dependence of the blend on the metric properties of the defining functions
and how the blend itself is constructed in different regions of R

2.
The concept of blending may seem to be at odds with R-functions, because

the sharp features (corners) is why we needed R-functions in the first place.
But in fact, the blending functions B12 are simply R-functions modified in
the neighbourhood of their zero set. This view was made explicit by Pasko,
Pasko, Ikeda and Kunii (2002) who proposed modifying R-functions as

B12 = x1 ⊙ x2 + d(x1, x2), (6.1)

where ⊙ is any binary R-function, and d(x1, x2) is a ‘displacement’ function
whose behaviour defines the actual blend. If d is a non-negative function,
it affects the shape globally. If the blend is to be restricted to some neigh-
bourhood of the corner, the displacement function d(x1, x2) must vanish
outside the neighbourhood of the origin. Such displacement functions have
been proposed in Pasko et al. (2002) and more complex transition functions
that generalize the notion of blending are proposed in Barthe, Wyvill and
De Groot (2004) and Fayolle, Pasko, Schmitt and Mirenkov (2006).

Viewing blending and transition operations in terms of R-functions is par-
ticularly appealing because Rp-functions behave as approximate distances
that are smooth everywhere except at the origin, which corresponds exactly
to the sharp feature to be blended. Following Theorem 4, composition of
such blends preserves normalization properties of the primitive functions ωi,
providing a convenient mechanism for controlling the shape of the composite
blends in the vicinity of sharp features. Furthermore, it is easy to see that
(6.1) is an instance of a conditional R-function, introduced in Section 3.4,
under the condition that d(x1, x2) = 0. Other conditional R-functions can
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be used to define powerful blending techniques. For example, consider a
ρ-blending operation corrected from Sheiko (1982):

B12 = x1 + x2 + s

√

x2
1 + x2

2 +
1

8ρ2
sρ(sρ − |sρ|), (6.2)

with sρ = x2
1+x2

2−ρ2. Comparing (6.2) with (3.7), it should be clear that in
this case B12 is a conditional R0-function. Everywhere outside the circular
region of radius ρ centred at the origin, the term sρ − |sρ| vanishes, making
B12 a disjunction when s = 1 and a conjunction when s = −1. Figure 6.1
shows the result of normalizing all primitives and replacing all R-functions
in Example 1 by the conditional R-function B12 from (6.2) with ρ = 0.25.
Notice that the overall shape of the pawn is virtually unchanged, but all
the sharp edges are now replaced with smooth blends.

6.3. Envelopes and projections

Beyond the obvious applications in three-dimensional Euclidean space,
R-functions can and have been used in more abstract settings. For example,
Pasko et al. (1995) describe a general multi-dimensional framework for geo-
metric modelling that includes a number of advanced operations relying on
R-functions. If Ω1 ⊂ R

k is defined by f1 : R
k → R and Ω2 ⊂ R

m is defined
by f2 : R

m → R, then the Cartesian product Ω3 ⊂ R
k+m is immediately

given by an R-conjunction operation:

Ω1 × Ω2 = f1 ∧
∗ f2.

If F : R
n → R, and Ω = (F ≥ 0) ⊂ R

n, then a section of Ω is ob-
tained by assigning a fixed value K to the ith variable xi. For m values
of Kj+1 = Kj + ∆xi that are spaced apart by some ∆xi, we end up with
a stack of sections Cij , j = 1, . . . , m. As ∆xi → 0, R-disjunction

∨∗
j Cij

converges to the projection of Ω on the bounded interval of R
n−1. Instead

of taking the limit, the R-disjunction of m sections may be blended to-
gether using one of the blending operations described above. These and
other derived functional operators provide a powerful arsenal for modelling
point sets in a multi-dimensional setting. For example, the sweep of a shape
Ω that is being transformed by a one-parameter affine transformation Mt,
t ∈ [t0, t1] is defined as

⋃

q∈Mt
Ωq, where Ωq is a transformed instance of

Ω by transformation q. Sweep is one of the fundamental operations in
solid modelling, with many applications in mechanical design and manufac-
turing (Abdel-Malek, Blackmore and Joy 2006). Sourin and Pasko (1995)
show how the general sweep may be formulated and computed using R-
functions. If Ω = (F (p) ≥ 0) ⊂ R

n is a static shape, then the dynamic
shape (F (p, t) ≥ 0) ⊂ R

n+1 is obtained by the coordinate substitution
p �→ M−1

t (p). Computing the sweep amounts to representing the projection
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on R
n of the (n + 1)-dimensional point set defined using R-functions as

F (p, t) ∧∗ (t − t0) ∧
∗ (t1 − t),

and evaluating its boundary numerically, based on the requirement that
∂F/∂t = 0. This technique can also be used to compute the boundary
of the dual infinite intersection

⋂

q∈Mt
Ωq operation described by Ilies and

Shapiro (1999).

6.4. Symmetric and periodic coordinate transformations

Coordinate transformations, a standard tool in analytic geometry, can be
used effectively with R-functions. If ω(x1, . . . , xn) is a normalized function
defining Ω, then ω(µ1, . . . , µn) is constructed by applying the coordinate
transformations µi : R

k → R to some or all variables xi. The notion of
the dynamic shape (F (p, t) ≥ 0) in the sweep operation described above
relied on such a coordinate transformation, but a more familiar form in-
volves sweeping a two-dimensional shape (ω(x1, x2) ≥ 0) ⊂ R

2 in R
3 by

coordinate substitution xi �→ µi(x1, x2, x3). When µ2 =
√

x2
2 + x2

3, the in-
equality (ω(x1, µ2) ≥ 0) defines a body of revolution; when µi = xi − βix3,
(ω(µ1, µ2) ≥ 0) is the prismatic body swept in the direction (β1, β2, 1), and
a general screw sweep when

µ1 = x cos φ(x3) + y sinφ(x3) + c1(x3),

µ2 = x cos φ(x3) − y sinφ(x3) + c2(x3),
(6.3)

where φ(x3) and ci(x3) are the parameters of the screw motion around
the x3-axis. Rvachev (1982) studied these and other coordinate transfor-
mations that construct three-dimensional shapes from two-dimensional sec-
tions, modifying them as needed to ensure differential and normalization
properties of the transformed function ω(µ1, . . . , µn).

When the µis specify an isometry, they can be used to make copies of
Ω that can be combined with Ω using R-functions. If µi(xi) are periodic
functions, then the shape (ω(µ1, . . . , µn) ≥ 0) inherits the discrete symme-
tries of µi. For example, suppose that Ω is symmetric with respect to the
coordinate axis and fits inside a coordinate box of width 2a. Define the
ith coordinate transformation µi(xi) = xi on the interval −a ≤ xi ≤ a
and require it to be a periodic function with period greater than 2a. Then
the set (ω(x1, . . . , µi(xi), . . . , xn) ≥ 0) has translational symmetry along
the xi-axis, reproducing the base shape Ω at regular intervals. The sim-
plest function µ satisfying this requirement is the 45◦ saw-tooth pattern,
but smooth approximations may be constructed using Fourier series, or by
methods described by Rvachev (1974).

Rvachev, Sheiko and Shapiro (1999) observed that more complex coor-
dinate transformation functions µi may be constructed as semi-analytic
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compositions of the above primitive coordinate transformations and R-
functions. Such coordinate transformations may prescribe periodic, sym-
metric, and random properties that explicitly depend on the values of the
coordinates xi and additional external parameters. Assuming the typical
situation where the complexity of the constructed normalized function ω
significantly exceeds that of the coordinate transformations, this approach
leads to constructions that are not only more intuitive, but also more ef-
ficient. Maksimenko-Sheiko, Matsevityi and Sheiko (2005) also used this
technique to construct piecewise functions φ(x3) in the coordinate transfor-
mations (6.3).

Example 3. The two-dimensional portion of the flag in Example 2 is de-
fined by (ω(p) = 0), where ω = ω1 ∧0 ω2 ∧0 ω3 ∧0 ω4, and all functions ωi

have been normalized to the first order. Figure 6.2(b) shows the plot of the
normalized function ω(M(p)), where M = M2 ◦M1 is a composition of two
coordinate transformations:

M2 = (x − 2h) ∧1 µ2(x) ∧1 (l − x), M1 = Rot(µ1(θ)).

The functions µ1 and µ2 are Fourier series approximations of the function µ
shown in Figure 6.2(a). In this particular example, the function µ1 is shifted
by π/7, has a period of 4π/7, and is a composition of rotation and reflection
as seen in Figure 6.2(b). Transformation M2 uses the R1-conjunction to
truncate the periodic transformation µ2 = µ as shown in Figure 6.2(a).

X

Y

h

l

f1 = x − 2hf2 = l − x

µ = µ(x)

(a) periodic transformation µ

may be truncated
(b) function ω(M(p)) from

Example 3

Figure 6.2. Coordinate transformations may be constructed using
compositions of symmetric and periodic functions with R-functions.



282 V. Shapiro

6.5. Planning and design

R-functions and derived constructions, such as those described above, and
others, have been used extensively in a variety of shape modelling applica-
tions, for example in mechanical design (Kutsenko 1990, Ensz, Storti and
Ganter 1998), robot motion planning (Shkel 1997, Rimon and Koditschek
1990), hair modelling (Sourin, Pasko and Savchenko 1996), Monte Carlo
models of transport phenomena (Altiparmakov and Belicev 1990), or stoch-
astic optimization techniques (Komkov 1989) that require repeated sam-
pling of the domain and/or boundary. In addition to the usual advan-
tages of implicit representations, parametric and differential properties of
R-functions significantly expand both the range and the possibilities of im-
plicit representations. Below, we consider two (not mutually exclusive) sit-
uations where modelling a region Ω with R-functions is useful: when Ω
represents a constraint in physical or abstract space, and when Ω itself is
the object of design and optimization.

A typical mathematical programming problem is to find a point x0 ∈ Ω ⊂
R

n where some objective function f(x) attains a maximum or a minimum
value. R-functions allow us to represent virtually any constraint region Ω
by a single inequality (ω ≥ 0). In geometric modelling applications, the
constraint (ω ≥ 0) often describes the subset Ω of physical space that must
be avoided or included for design or planning purposes. In robot motion
planning, Ω usually corresponds to either the obstacle space (to be avoided
by the robot) or to the free space (where the robot can move). For example,
Rimon and Koditschek (1992) use R-functions to construct the artificial
potential function ω representing free space Ω; the differential properties of
ω are critical because the gradient information is used to navigate through Ω.

In more general situations, the constraint region Ω may be specified as
a union of N systems of inequalities σki(x) ≥ 0, i = 1, . . . , M, where each
(σki ≥ 0) is a region Σik, and k = 1, . . . , N . In other words, the region of
interest is given in disjunctive normal form as

Ω =
⋃

k

(
⋂

i

Σki

)

or, using R-functions, by the inequality

∗∨

k

( ∗∧

i

σki

)

≥ 0.

For example, when a rigid shape Ωi ⊂ E
3 is given by (ωi ≥ 0) and is free to

move in space, it can be represented in general position by (ωi(x,pi) ≥ 0),
where x ∈ E

3, and pi is a vector of its location (position and orientation)
parameters. The intersection of two such shapes is given by σij(x,pi,pj) =
(ωi(x,pi) ∧

∗ ωj(x,pj)) ≥ 0. It follows that the pairwise non-interference
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condition for the two objects can be formulated as the requirement that
−maxx σij(x,pi,pj) ≥ 0. The non-interference conditions generalize in an
obvious fashion to collections of n rigid shapes and to the unions of rigid
shapes, using R-conjunctions and R-disjunctions on pairwise condition func-
tions σij . These ideas were first discussed in Rvachev (1967), and further
developed in Stoian (1975) and Stoian and Panasenko (1978), with many
applications to problems of optimal placement, blank nesting, and packing.

When it is possible to estimate that the optimal value of the objective
function f(x) is z0 ∈ [zmin, zmax], R-functions can be used to transform the
original constrained problem into a sequence of unconstrained optimization
problems. Suppose we are looking for the minimum, and consider the region
Q(z) = Ω ∩ (z − f(x) ≥ 0), also defined by the inequality

q(x, z) = ω(x) ∧α (z − f(x)) ≥ 0. (6.4)

For a fixed value z > z0, the region Q(z) has interior points, and if z < z0,
then Q(z) is an empty set ∅. Assuming that Q(z) is bounded, and ω, f are
continuous functions, it follows that the maximum value of the objective
function f(x) is achieved when q0(z) = maxx q(x, z) = 0. Note that q0(z) is
monotone in z. Thus, the original problem is transformed into a sequence
of optimization problems (each problem is defined by a fixed value of z ∈
[zmin, zmax]) of the function q(x, z) without any constraints on x. Additional
details can be found in Rvachev (1967, 1982).

6.6. Shape optimization

In shape design and optimization problems, Ω is not a constraint, but is
the object of study. In this case, the shape is parametrized as Ω(b), and
the challenge is to determine the values of parameters b = {b1, . . . , bk} that
will optimize some objective function F (Ω(b)), for example, volume, energy,
stress, etc. Shape optimization involves three tasks: computation of sen-
sitivity dF/dbi, updating the model Ω(b), and (re)evaluating the objective
function F ; each of the tasks is simplified using R-functions. Consider a
generic case, when the objective function F is defined on Ω as F =

∫

Ω f dΩ.
Then, it can be shown (Chen, Freytag and Shapiro 2007a) that computation
of sensitivity requires calculation of

∫

∂Ω

f

|∇ω|

∂ω

∂bi
dΓ =

N∑

k=1

∫

∂Ωk

f

|∇ωk|

∂ωk

∂bi
dΓ, (6.5)

where ∂Ω = (ω = 0), and ∂Ωk = (ωk = 0) is the portion of the boundary
that belongs to the kth primitive used to construct the domain Ω and is
affected by the parameter bi. This result is implied by the mere existence
of the Rp-construction for ω in terms of the primitive functions ωk, and
Theorem 4 – even if this construction may not be known explicitly. On
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the other hand, if the domain is indeed represented by an R-function on n
primitives,

ω(ω1, . . . , ωk(bi), . . . , ωn) ≥ 0, (6.6)

then updating the geometric model Ω(b) is simply a matter of syntacti-
cally updating the parameter bi. Furthermore, when the objective function
F (Ω(b)) can be computed directly from the implicit representation ω = 0, it
automatically inherits the same parametrization and may be (re)evaluated
for any value of bi. A great advantage of this approach to shape optimiza-
tion is that it places no artificial constraints on the topology of Ω, which is
free to change during the optimization process.

The above techniques work well when the objective function F is volume,
mass, surface, and moments of inertia, but they also apply to more general
situations where F may depend on the solution of a boundary value problem
defined over Ω. Suppose that boundary conditions φk are prescribed on the
portion of boundary Ωk. In this case, Shapiro and Tsukanov (1999b) ob-
served that parametrization of Ω(b) as above also induces a parametrization
of the solution structure to the boundary value problem u = B(ω, ωk, φk)[Ψ],
where B can be viewed as an operator and Ψ is a suitable set of basis func-
tions.7 Such a parametrization supports fully automated (re)evaluation of
boundary value problems, which is particularly effective for problems with
deforming domains and moving boundary conditions. Chen, Shapiro, Suresh
and Tsukanov (2007b) show that the computation of sensitivity for a large
class of boundary value problems also reduces to boundary integration over
primitive boundaries (ωk = 0). They also showed that the representation of
Ω by (6.6) can include primitive halfspaces (ωk ≥ 0) that define free-form
boundaries and/or spatial constraints, leading to fully automated procedure
for shape and topology optimization with parametric control.

7. Boundary value problems

Perhaps the most significant application of R-functions has been in the area
of boundary value problems – the area that motivated Rvachev to invent
the concept of R-functions and that he himself has always included under
the general auspices of the ‘theory of R-functions’. We summarize the key
ideas in this section.

7.1. Generalized Taylor series

The classical Taylor formula approximates a function in the neighbourhood
of a given point x0 by a polynomial in (x−x0). The neighbourhood itself is
described by the term x−x0, which can be thought of as a one-dimensional

7 The concept of solution structure is explained in Section 7.
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distance function that vanishes at the point x0. The generalized Taylor
series expansion introduced by Rvachev (1974) represents a function u in the
neighbourhood of the boundary ∂Ω, as a polynomial in (powers of) distance
to the boundary ∂Ω. Suppose that ∂Ω is described by some function ω that
vanishes on ∂Ω and is normalized to order m. Then, for a known function u,

u = u(0) +

m∑

k=1

1

k!
uk(0)ωk + O

(
ωm+1

)
, (7.1)

where uk = ∂ku
∂ωk = Dk

νu (since ω is normalized) are evaluated at the bound-
ary ∂Ω, in the direction ν normal to ∂Ω.

In most applications, the function u is not known, but must be recon-
structed from its values and/or derivatives fk specified at the boundary ∂Ω.
In order to be used as coefficients in the generalized Taylor series (7.1), not
only must the functions fk be defined everywhere, but they must also be-
have as constants in the direction normal to the boundary. This is achieved
by conditioning the specified functions fk through the coordinate transfor-
mation

f∗(x) = f(x − ω∇ω). (7.2)

Since ω is normalized, the result of this coordinate transformation is that
the value of f∗

k at any point near ∂Ω is determined by the closest point on
∂Ω and

f∗(x)|∂Ω = f(x)|∂Ω,
∂kf∗

∂νk |∂Ω
= 0, for k = 1, 2, . . . , m. (7.3)

The functions f∗
k are called normalizers of functions fk by ω in Rvachev

(1974), and are used as coefficients in the generalized Taylor series expan-
sion. Another technique to construct normalizers is described by Rvachev
and Sheiko (1995).

Theorem 7. (Rvachev 1982) If the function ω(x) is normalized up to
the mth order and a function u(x) satisfies conditions

u(x)|∂Ω = f0(x),
∂ku

∂νk |∂Ω
= fk(x), for k = 1, 2, . . . , m, (7.4)

then u can be represented in the neighbourhood of the boundary ∂Ω in the
form

u = f∗
0 +

m∑

k=1

1

k!
f∗

kωk + O(ωm+1), (7.5)

where f∗
k (x), k = 0, 1, . . . , m are normalizers of the functions fk(x), k =

0, 1, . . . , m with respect to ω(x).
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(a) function ω1

y

x
∂Ω1

∂Ω2

ω1

ω2

(b) ∂Ω = ∂Ω1 ∪ ∂Ω2 (c) function ω2

(d) Taylor polynomial P1 (e) function u interpolates
P1 and P2

(f) Taylor polynomial P2

Figure 7.1. When portions of the boundary ∂Ω1 and ∂Ω2 are represented
implicitly by normalized functions (ω1 = 0) and (ω2 = 0), respectively,
interpolating boundary conditions is a matter of syntactic substitution.

Example 4. The boundary of the domain in Figure 7.1 is ∂Ω = ∂Ω1∪∂Ω2,
where ∂Ω2 is the portion of the circle. The following boundary conditions
are prescribed:

f |∂Ω1
= 1 + x2

︸ ︷︷ ︸

g0

,
∂f

∂ν

∣
∣
∣
∣
∂Ω1

= 10(cos(πx) + y)
︸ ︷︷ ︸

g1

; (7.6)

f |∂Ω2
= 10 + (y − 2)2

︸ ︷︷ ︸

h0

,
∂f

∂ν

∣
∣
∣
∣
∂Ω2

= 10 sin(πx) cos(πy)
︸ ︷︷ ︸

h1

. (7.7)

If the boundaries ∂Ωi are represented by the respective normalized functions
(ωi = 0), extending these boundary conditions into the domain is a matter
of syntactic substitution into the truncated Taylor series from (7.5). For
∂Ω1, we have

P1 = g∗0 + g1ω1 = 1 +

(

x −
∂ω1

∂x
ω1

)2

+ 10(cos(πx) + y)ω1,

P2 = h∗
0 + h1ω2 = 10 +

(

y − 2 −
∂ω1

∂y
ω2

)2

+ 10 sin(πx) cos(πy)ω2.

The two functions are plotted over the domain Ω in Figures 7.1(d) and (f),
respectively.
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The generalization suggests that many techniques relying on Taylor poly-
nomials in the classical univariate setting may also be applicable in the
general multi-dimensional setting, once the normalized function ω is con-
structed for the boundary ∂Ω of interest. In particular, Rvachev (1967) rec-
ognized that Kantorovich’s method for representing the solutions to bound-
ary value problems with Dirichlet boundary conditions via (2.6) is a spe-
cial case of (7.5) with k = 1. More generally, in the context of boundary
value problems, the prescribed functions fk correspond to the boundary
conditions, while the remainder term O(ωm+1) must be determined to sat-
isfy some additional constraint, e.g., a differential equation. Formally, the
approach is justified following a generalization of the classical Weierstrass
Approximation Theorem, modified from Kharrik (1963).8

Theorem 8. Suppose that Ω is a bounded region of m-dimensional space
with boundary ∂Ω. Let ω(x) ∈ Cs be a function defined in an open region
that contains Ω and satisfies the following conditions:

(1) ω(x) = 0 ⇐⇒ x ∈ ∂Ω,

(2) derivatives of ω up to order s satisfy the Lipschitz condition,

(3) ∇ω(x)|x∈∂Ω 
= 0.

If a function γ ∈ Cs(Ω) and vanishes on the boundary ∂Ω together with
its derivatives up to order k < s, then for any positive ε there exists a
polynomial Ψ such that

‖γ − ωk+1Ψ‖Hs(Ω) < ε. (7.8)

We can now rewrite expression (7.5) as

u = P + ωk+1Ψ, (7.9)

where P satisfies the boundary conditions fi, i = 0, 1, . . . , k. If f is the
solution to the boundary value problem, the function γ = f −P satisfies the
conditions of Theorem 8, and approximating the solution to the boundary
value problem amounts to choosing the undetermined polynomial Ψ. But
before we discuss this task, we deal with yet another challenge. In most
practical situations, different boundary conditions are prescribed at different
portions ∂Ωi of the boundary ∂Ω. These boundary conditions must be
interpolated in some way, and once again, the task is greatly simplified
using normalized functions ω.

7.2. Transfinite interpolation

For every type of boundary condition specified on a portion of the boundary
∂Ωi, we can construct a generalized Taylor polynomial Pi of the form (7.5).

8 Kharrik’s original theorem also deals with issues related to the order of approximation
and convergence that are outside the scope of this survey.
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We would now like to interpolate all of them by a single function
∑n

i=1 PiWi.
Rvachev (1967) proposed choosing the weights Wi as

Wi(x) =
ω−µi

i (x)
n∑

j=1
ω
−µj

j (x)

=

n∏

j=1;j �=i

ω
µj

j (x)

n∑

k=1

n∏

j=1;j �=k

ω
µj

j (x)

, (7.10)

which can be seen as a form of inverse distance interpolation, where the
weights Wi form a partition of unity and are chosen to be inversely propor-
tional to the power µi of the approximate distance ωi from the locus ∂Ωj .
When µi = 1, the expression on the right appears to be a form of Lagrange
interpolation (2.8). Inverse distance interpolation was used by Shepard
(1968) to interpolate scattered point data, but Watson (1992) cites appli-
cations of this technique dating back to 1920s. It is well known (Hoschek
and Lasser 1993) that the exponents µi control the behaviour of the inter-
polating function at the loci ∂Ωi: when 0 < µi ≤ 1, the interpolant is not
differentiable; values of µ1 > 1 ensure that the interpolant is differentiable
µi − 1 times at ∂Ωi.

Rvachev et al. (2001) study the above approach to interpolation and
demonstrate its advantages in several applications. Note that (7.10) de-
pends only on the knowledge of the normalized functions ωi, and places no
constraints on the differential or topological properties of the sets ∂Ωi. Thus,
the method may be used without modification to interpolate functions and
their derivatives that are specified over arbitrary points, curves, surfaces, or
regions – with or without sharp corners – provided they are represented im-
plicitly by normalized functions ωi. Applications of this technique are found
in many areas ranging from geographic information systems to modelling of
material properties (Biswas, Shapiro and Tsukanov 2004).

If Pi are generalized Taylor polynomials in the form of (7.5) satisfying
the boundary conditions of order ki on the boundary ∂Ωi, then they can be
interpolated into a single expression using weights (7.10). For example, the
two Taylor polynomials P1 and P2 in the Example 4 are interpolated by

u0 =
P1ω

2
2 + P2ω

2
1

ω2
1 + ω2

2

,

which is shown in Figure 7.1(e). Theorem 8 may no longer apply because
derivatives of different order may be indicated on different portions ∂Ωi.
However, an extension of this result is proved by Rvachev et al. (2000).

Theorem 9. Let Ω be a closed region and f ∈ Cs(Ω) be defined in the
interior of Ω. Values of the function f and its partial derivatives up to order
ki < s are prescribed on boundaries ∂Ωi ⊂ ∂Ω. Then, for any small ε there
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exists a polynomial Ψ such that the inequality

‖γ − λΨ‖Hs(Ω) < ε (7.11)

is satisfied, where γ = f − u0 is a function that vanishes on ∂Ωi together
with its partial derivatives up to order ki, and λ =

∏N
i=1 ωki+1

i .

In other words, a general solution to a boundary value problem may be
written as

u = u0 + R =

n∑

i=1
Piω

−ki

i

n∑

i=1
ω−ki

i

+ Ψ
n∏

j=1

ω
kj+1
j . (7.12)

The first term u0 in the expression satisfies all imposed boundary conditions
exactly, while the second term is simply a product of the remainder terms for
each individual boundary condition. The power kj + 1 of ωj indicates that
derivatives up to order kj have been specified on ∂Ωj . Finding a solution
to the boundary value problem reduces to constructing the polynomial Ψ.

7.3. Solution structures of boundary value problems

Theorem 9 suggests a non-traditional approach to solving boundary value
problems that generalizes the method of Kantorovich. Given any represen-
tation of boundary ∂Ω =

⋃
∂Ωi and associated boundary conditions, we first

construct a normalized function ωi for each portion of the boundary ∂Ωi, for
example using R-functions and one of the methods described in Section 5.
Syntactic substitution into expression (7.5) yields a Taylor polynomial cor-
responding to the boundary condition on ∂Ωi. Expression 7.12 interpolates
all specified boundary conditions and defines the solution structure of the
boundary value problem – a space of functions that satisfy all given bound-
ary conditions and differ from each other only in the choice of the unde-
termined polynomial Ψ. Solving the boundary value problem amounts to
choosing Ψ from a sufficiently complete space (multivariate polynomials,
B-splines, finite elements, etc.) to approximate the differential equation us-
ing least squares, Ritz, or another variational method. For example, the
expression

u = (Ψ1 − ωDν(Ψ1))
︸ ︷︷ ︸

f∗

0
(0)

+ ϕω
︸︷︷︸

f1(0)ω

+ ω2Ψ2
︸ ︷︷ ︸

O(ω2)

(7.13)

defines a family of functions that satisfy the Neumann boundary condi-
tions ∂u

∂ν |∂Ω
= ϕ0, where ϕ is an extension of ϕ0 into the interior of domain

Ω. The first term f0 in expression (7.13) represents a value of the func-
tion prescribed on the boundary ∂Ω. Since the Neumann boundary con-
dition does not explicitly prescribe the value of u on the boundary, f0 is
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represented by a linear combination Ψ1 of basis functions with coefficients
that will be determined by the numerical solution procedure. Subtraction
of ωDν(Ψ1) from Ψ1 ensures that the first normal derivative of u0 vanishes
on the zero set of ω. The second term in expression (7.13) represents a first-
order normal derivative of u. This term does not need to be conditioned
since no higher-order derivatives are prescribed. The remainder term ω2Ψ2

guarantees completeness of u.
Consider now a second-order boundary value problem with mixed bound-

ary conditions

u|∂Ω1
= ϕ0,

(
∂u

∂ν
+ h0u

)

|∂Ω2

= ψ0 (7.14)

specified on ∂Ω = ∂Ω1∪∂Ω2. If ∂Ωi = (ωi = 0), i = 1, 2, and ωi are normal-
ized functions, the corresponding generalized Taylor series expansions are

u1 = ϕ + O(ω1) = P1 + O(ω1),

u2 = Ψ2 − ω2Dν2(Ψ2) − hω2Ψ2 + ψω2 + O(ω2
2) = P2 + O(ω2

2).

We could now write the corresponding solution structures for u1 and u2

and then interpolate them into a common solution structure using weights
(7.10). Alternatively, simply substituting into the expression for the general
solution structure (7.12) yields

u =
P1ω

2
2 + P2ω1

ω1 + ω2
2

+ Ψω1ω
2
2 (7.15)

=
1

ω1 + ω2
2

(
ϕω2

2 + ω1(Ψ2 − ω2Dν2(Ψ2) − hω2Ψ2 + ψω2)
)

+ Ψω1ω
2
2.

The above procedure for constructing solution structures can be fully auto-
mated, but the resulting expressions can often be optimized using special-
case analysis. Several alternative solution structures for the above second-
order boundary value problem with mixed boundary conditions were de-
rived in Rvachev (1982). Much of the Ukrainian literature on application
of R-functions is devoted to the explicit derivation and simplification of
solution structures for common boundary value problems. Rvachev and
Sheiko (1995) summarize the main results and give a number of illustrative
examples.

The transfinite interpolation term in the solution structure (7.12) allows
one to enforce all imposed boundary conditions in a boundary value prob-
lem. But the concept of the solution structure naturally generalizes to
include a priori known behaviours of the field u by explicitly modifying

the remainder term R = Ψ
∏n

j=1 ω
kj+1
j in the general solution structure

(7.12). Examples of such behaviour include singularities (often associated
with corners and cracks), asymptotic changes (expressed as a function of
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distance from some boundary), and other empirical and/or postulated prin-
ciples (such as St. Venant’s principle in solid mechanics and Chvorinov’s
rule in solidification of metal castings). Computationally, it is convenient
to associate the construction of the polynomial Ψ with the choice of the
basis functions and numerical procedure; on the other hand, the normalized
functions ωi are the natural means for extending the boundary conditions
from the boundary into the domain.

A common situation arises at corner points p0 ∈ (∂Ωi ∩ ∂Ωj), and the
field is known to behave as a function τj (of distances, angles, etc.) in the
neighbourhood of the corner points. In this case, modifying the remainder
term as R

∏
τj captures the singular behaviour. This technique was orig-

inally applied to torsion problems in Goncharyuk, Rvachev and Shklyarov
(1968), and was revised in the context of solidification in metal casting using
Rvachev, Sheiko, Shapiro and Uicker (1997), using Rp-equivalence operation
(5.3) in place of multiplication xy. Suppose that the domain’s boundary is
decomposed into n smooth segments ∂Ωi and ‘sharp features’ contained in
∂Ωi ∩ ∂Ωj . Both the smooth segments and the sharp features are repre-
sented implicitly by (ωi = 0) with normalized functions ωi. Then, following
Theorem 4, the properties of the composite function

ω =
ω1

m1
∼p

ω2

m2
∼p · · · ∼p

ωn

mn

are conveniently controlled by parameters mi, because Rp-functions preserve
the differential properties of the arguments up to order p. If (ωi = 0) is a
smooth boundary, then mi defines the gradient of ω at a regular point of
∂Ωi; if (ωi = 0) is a sharp feature, then mi specifies the behaviour of ω as
a function of the angle at the ith corner. A given normalized function ωi

may also be scaled, for example,

ω′
i =

ωi

1 + (βωi)α
, and/or ω′

i = ωi ∧
∗ γ(p)

with parameters α, β, γ controlling its magnitude within the domain, while
preserving the normalization of ω′

i. Sheiko (1982) and Rvachev (1982) dis-
cuss these and several other methods for including a priori information in a
solution structure for problems with corners, cracks, and interfaces. Com-
pleteness of the modified solution structures is considered in Rvachev and
Mikhal’ (2001).

Numerous other solution structures for many common boundary value
problems have been derived: elasticity (Rvachev and Sinekop 1990), vibra-
tion and stability of plates and shells (Rvachev et al. 1973, Rvachev and
Kurpa 1987), heat transfer (Rvachev and Slesarenko 1976, Rvachev, Sle-
sarenko and Safonov 1993), fluid dynamics (Tsukanov, Shapiro and Zhang
2003, Maksimenko-Sheiko and Sheiko 2005), thermo-elasticity (Rvachev,
Sinekop and Molotkov 1991), contact (Rvachev, Sinekop and Molotkov
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1992), diffraction (Gulyayev, Kravchenko, Rvachev and Sizova 1995),
heterogeneous media (Tsukanov 2002, Tsukanov and Shapiro 2005), time-
varying domains (Shapiro and Tsukanov 1999b), and many others.

7.4. Meshfree modelling and analysis with RFM

The approach outlined above was termed the R-function method, or RFM,
by Rvachev. In retrospect, it seems more appropriate to interpret RFM as
‘Rvachev’s function method,’ in recognition that it does not directly rely
on the use of R-functions, since normalized functions may be constructed
by other means. RFM offers a number of computational advantages, as
described in Shapiro and Tsukanov (1999b) and Rvachev et al. (2000), in-
cluding the ability to satisfy all prescribed boundary conditions exactly (on
the zero set of the normalized functions ωi) without any spatial discretiza-
tion. This qualifies RFM as essentially a meshfree method, even though
background meshes may be used for integration and/or visualization pur-
poses.

One of the very first meshfree systems based on RFM was a software sys-
tem called POLYE (which means ‘field’ in Russian) developed in Ukraine
in the 1970s and 1980s, specifically for solving two-dimensional bound-
ary value problems (Rvachev and Shevchenko 1988, Rvachev, Manko and
Shevchenko 1986, Rvachev and Manko 1983) using R-functions. In POLYE,
the geometric domain, boundary conditions, and solution structure were de-
scribed in a programming language RL. A typical RL program contained
geometric description of the domain in terms of predefined or user-specified
analytic primitives (ωi = 0) and R-functions, explicit declaration of the so-
lution structure, as well as detailed specification of the solution procedure,
including the number and type of basis functions to represent Ψ, the numer-
ical procedure (such as Ritz or least squares), integration parameters, and so
on. At run time, the solution structure was automatically differentiated and
numerically integrated over the background mesh in order to assemble the
corresponding linear system. The solution for Ψ was substituted back into
the solution structure and visualized. Both integration and visualization
algorithms utilized variants of the marching cube algorithms (Shevchenko
and Tsukanov 1994, Rvachev, Shevchenko and Veretel’nik 1994).

POLYE served as an early prototype for several more advanced sys-
tems. The first fully automated system, SAGE (Shapiro and Tsukanov
1999a, Tsukanov and Shapiro 2002), algorithmically constructed all required
normalized functions from boundary and/or Constructive Solid Geometry
(CSG) representations using R-functions as described in Section 5, and auto-
matically assembled the solution structure implied by the indicated bound-
ary conditions. Greatly improved algorithms for automatic differentiation
(Tsukanov and Hall 2003) and numerical integration resulted in performance
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that is competitive with mesh-based methods. The architecture of a gen-
eral purpose meshfree system is described in detail in Tsukanov and Shapiro
(2002), where three-dimensional applications of RFM are also demonstrated.
A variety of basis functions may be chosen for approximating the polynomial
Ψ, including multivariate polynomials, multi-resolution B-splines, trigono-
metric polynomials and so on. Fully automated meshfree technology has
been applied to a variety of boundary value problems, ranging from ther-
mal conduction, linear elasticity, vibration and bending, to more challenging
problems such as fluid dynamics (Tsukanov et al. 2003) and thermoelastic-
ity in domains with heterogeneous materials (Tsukanov and Shapiro 2005).
The single most difficult task in three dimensions remains the automatic
construction of the normalized distance functions, because the practical al-
gorithms based solely on R-functions tend to be limited and inefficient.
Freytag et al. (2006) recently demonstrated that RFM can be combined
with approximate distance fields that are sampled directly from any three-
dimensional geometric representation, using R-functions only when set op-
erations are explicitly required.

The fundamental ideas of RFM are also used by other meshfree and mesh-
less methods, as surveyed by Babuška, Banerjee and Osborn (2003). A ma-
jor challenge for all such methods is imposition of boundary conditions, and
Dirichlet boundary conditions in particular, in the absence of a mesh. The
so called ‘characteristic function method’ for satisfying the boundary con-
ditions relies on the Dirichlet solution structure (2.6) used by Kantorovich,
and is becoming increasingly popular due to R-functions. Notably, in the
WEB-splines method proposed by Höllig (2003), the undetermined polyno-
mial Ψ is constructed using uniform multivariate B-splines that are extended
based on their location with respect to the domain’s boundary ∂Ω in order
to ensure the stability of numerical computations. The weight function ω
is constructed using R-functions on numerically constructed primitive func-
tions of the form

ωi = 1 − max(0, 1 − dist(x, ∂D)/δ)γ .

With the natural neighbour Galerkin method, Laguardia, Cueto and Do-
blare (2005) rely on the same solution structure, but ω is constructed using
R-functions on analytically defined primitives, while Ψ is constructed using
Sibson’s natural neighbour interpolation on a Voronoi diagram. When (ω =
0) represents the geometry of small internal features (for example, cracks)
and discontinuities (for example at interfaces between bonded materials),
replacing ω in the Dirichlet solution structure with the Heaviside function
H(ω) and Ψ with standard finite elements Dirichlet solution structure, yields
a representation for an ‘enhanced’ solution field with built-in singularities,
avoiding the usual difficulties with fine (re)meshing normally required in
such problems (Belytschko, Parimi, Moes, Sukumar and Usui 2003).
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More generally, Babuška et al. (2003) pointed out that many of the mesh-
less methods can be considered to be special cases of the partition of unity
or generalized finite element (GFEM) method. All such methods appear to
start with a selection of basis functions (partition of unity) to represent Ψ,
which is then multiplied by ‘local functions’ ωi that enhance the approxi-
mating solution space, based on geometric, asymptotic, or empirical infor-
mation. Considering these methods as special cases of the Dirichlet solution
structure suggests a systematic and constructive approach for satisfying the
imposed boundary conditions, singularities, and/or other asymptotic condi-
tions, as discussed in Section 7.3. For example, Duarte, Kim and Quaresma
(2006) recently proposed a new type of Cm non-convex finite element that
is a product of the standard partition of unity Ψ and a Cm weight ω con-
structed using Rm

0 -functions.
The concept of solution structure is also useful for adaptive refinement

of the approximations and multi-resolution modelling of boundary value
problems. The most obvious approach would be to build the adaptivity
and multi-resolution into the undetermined polynomial function Ψ. For
example, variable (non-uniform) B-splines are common, and Höllig (2003)
proposed using hierarchical B-splines. Both p and h refinements may be
supported, but the global problem must be solved for each refinement, and
the shape of refinement regions is determined and limited by the type of
basis functions used in Ψ. Another approach to refinement in Tsukanov
and Shapiro (2007) advocates representing the refined solution as a series
of localized structures, each requiring the solving of a local boundary value
problem. Each localization is specified by a refinement window of arbitrary
shape, represented implicitly by a normalized window function (ω1 ≥ 0). For
example, if the refinement region is contained in the interior of a domain Ω,
the Dirichlet solution structure (2.6) is modified as

u = ϕ + ωΨ + ω2
1H(ω1)Ψ1,

where ω2
1 ensures C1-continuity of the solution field, H(ω1) guarantees that

the refined solution does not modify the solution outside the refinement
window, and Ψ1 is a refinement polynomial constructed from a set of addi-
tional basis functions. See Tsukanov and Shapiro (2007) for further details
and application to more general boundary value problems and refinement
windows.

8. Conclusions

Rvachev hoped that R-functions would eventually be accepted as funda-
mental operations on par with other elementary functions. His belief was
based on the observation that R-functions seem to provide a missing link
between the logic and real analysis, and that they tend to streamline and
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unify many computational tasks. This survey attempted to explain this link,
to convey the key ideas and concepts of the theory, and to connect them
to related developments in geometric modelling and engineering analysis.
The survey did not attempt an in-depth analysis of any topics, and did not
try to be comprehensive. The cited references (albeit many are available
only in Russian) contain a wealth of additional results, techniques, open
problems, and applications. The focus on semi-analytic sets is justified be-
cause their properties are well understood, and because they are assumed in
many computational applications. But it should be clear that this restric-
tion is artificial. For example, Martin (1994) proposed using R-functions
with fuzzy sets.

Generalizations of R-functions were also evident to Rvachev (1982). He
observed that, besides the partition of real numbers into positive and neg-
ative, there are many other choices for potentially useful partitions. For
example, one can partition real numbers into rational and irrational num-
bers, or, say, into all real numbers in the interval [0, 1], and the rest of the
real numbers. It is possible to introduce several or even infinitely many
gradations when subdividing the set of real numbers. In general, any such
partition ∆ of the set of real numbers (based on some criterion) also de-
termines the set R(∆) of those real functions that in some sense ‘inherit’
the partition criterion (sign, rationality, membership in [0, 1], etc.) Such
functions are a generalization of the concept of R-functions as described in
this paper. In fact, Rvachev went a step further and defined a notion of
R-mapping f : X

n → X
m, where X is an arbitrary abstract space. The

partition ∆ of X into the qualitative equivalence classes is based on some
multi-valued logic function Sk : X → Bk. Then R-mapping f is identified by
the existence of the companion multi-valued logic function Φ : B

n
k → B

m
k ,

satisfying the following commutative diagram:

X
n f

−−−−→ X
m

Sn
k



�



�Sm

k

B
n
k −−−−→

Φ
B

m
k

This and further generalizations of R-functions described by Rvachev (1982)
do not appear to have found many applications so far, most likely because
they remain largely unknown to the research community at large.

It is evident that R-functions are becoming more popular and are now
widely used in many computational applications. It should be remembered
that R-functions were invented when computational technology was in its
infancy, and computational geometry and geometric modelling had not been
established as disciplines. Today, semi-analytic sets may be represented or
approximated by many other methods, and each method has its strength
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and weaknesses. The wealth of alternative methods in no way diminishes
the intellectual and practical significance of Rvachev’s contributions and
of the theory of R-functions. Interestingly, representation of point sets by
sampled distance fields appears to be growing in popularity, partly driven
by advances in image processing and medical imaging (Jones and Bærentzen
2006). Such distance fields may be smoothed using interpolation or fitting
techniques (Freytag et al. 2006), resulting in smooth approximations to
normalized functions. However, R-functions must be used if such fields
need to represent sharp corners and features.

It is also possible that applications of R-functions may prove to be equally
or even more important than the R-functions themselves. In particular, the
notion of the RFM solution structure described in Section 7 appears to be
extremely useful for modelling and solving boundary value problems. With
the exception of RFM itself, many modern meshfree methods appear to be
struggling with modelling and approximating the Dirichlet solution struc-
ture. Meanwhile, RFM provides a systematic and accurate method for im-
posing any and all types of boundary conditions, without artificial topolog-
ical constraints or meshing, and independently of any particular numerical
scheme. It remains to be seen whether satisfaction of boundary conditions
results in improved numerical properties, but there is no question that RFM
provides dramatic improvement in flexibility and programmability of solvers
for boundary value problems.
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